K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2018

\(\left(2^{10}+2^9\right)+\left(2^8+2^7\right)+....+\left(2^2+2\right)\)

\(=2^9.\left(2+1\right)+2^7.\left(2+1\right)+...+2.\left(2+1\right)\)

\(=2^9.3+2^7.3+...+2.3\)

\(=3.\left(2^9+2^7+...+2\right)⋮3\)

P/S: mấy bài khác tương tự

13 tháng 10 2018

\(a,2^{10}+2^9+2^8+...+2\)

\(=\left(2^{10}+2^9\right)+\left(2^8+2^7\right)+...+\left(2^2+2\right)\)

\(=2^9\left(2+1\right)+2^7\left(2+1\right)+...+2\left(2+1\right)\)

\(=2^9.3+2^7.3+...+2.3\)

\(=3\left(2^9+2^7+...+2\right)⋮3\left(đpcm\right)\)

\(b,1+3+3^2+3^3+...+3^{99}\)

\(=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{98}+3^{99}\right)\)

\(=4+3^2\left(1+3\right)+...+3^{98}\left(1+3\right)\)

\(=4+3^2.4+...+3^{98}.4\)

\(=4\left(1+3^2+...+3^{98}\right)⋮4\left(đpcm\right)\)

\(c,1+5+5^2+5^3+...+5^{1975}\)

\(=\left(1+5\right)+\left(5^2+5^3\right)+...+\left(5^{1974}+5^{1975}\right)\)

\(=6+5^2\left(1+5\right)+...+5^{1974}\left(1+5\right)\)

\(=6+5^2.6+...+5^{1974}.6\)

\(=6\left(1+5^2+...+5^{1974}\right)⋮6\left(đpcm\right)\)

AH
Akai Haruma
Giáo viên
31 tháng 12 2023

1/

Tổng A là tổng các số hạng cách đều nhau 4 đơn vị.

Số số hạng: $(101-1):4+1=26$

$A=(101+1)\times 26:2=1326$

AH
Akai Haruma
Giáo viên
31 tháng 12 2023

2/

$B=(1+2+2^2)+(2^3+2^4+2^5)+(2^6+2^7+2^8)+(2^9+2^{10}+2^{11})$

$=(1+2+2^2)+2^3(1+2+2^2)+2^6(1+2+2^2)+2^9(1+2+2^2)$

$=(1+2+2^2)(1+2^3+2^6+2^9)$

$=7(1+2^3+2^6+2^9)\vdots 7$

15 tháng 11 2023

    G = 21 + 22 + 23 + 24 + 25 + 26 + 27 + 28 + 29 + 210

2.G = 22 + 23 + 24 + 25 + 26 + 27 + 28 + 29 + 210 + 211

2G - G = (22 + 23 + 24 + 25 + 26 + 27 + 28 + 2+ 210 + 211) - (21 + 22 + 23 + 24 + 25 + 26 + 27 + 28 + 29 + 210)

G = 22 + 23 + 24 +25 + 26 + 27 + 28 + 29 + 210 + 211 - 21 -22 -23 -24 - 25 - 26 - 27 - 28 - 29 - 210

G = (22 -22) +(23 - 23) + (24 - 24) + (25 -25) + (26 - 26) +(27 - 27) +(28 -28) + (29 - 29) + (210 - 210) + (211 - 21)

G = 211 - 2

G = 2048 - 2 (đpcm)

15 tháng 11 2023

b, 

G = 21 + 22 + 23 + 24 + 25 + 26 + 27 + 28 + 29 + 210

D = 2.(1+ 2 + 22 + 23 + 24 + 25 + 26 + 27 + 28 + 29)

Vì 2 ⋮ 2 nên D = 2.(1+2+22+23+24+25+26+27+28+29)⋮2 (đpcm)

5 tháng 2 2022

a) \(A=\left(5+5^2\right)+5^2\left(5+5^2\right)+...+5^6\left(5+5^2\right)=30+5^2.30+...+5^6.30\)

\(=30\left(1+5^2+...+5^6\right)⋮30\Rightarrowđpcm\)

b) \(B=\left(3+3^3+3^5\right)+3^6\left(3+3^3+3^5\right)+...+3^{24}\left(3+3^3+3^5\right)=273+3^6.273+...+3^{24}.273\)

\(=273.\left(1+3^6+...+3^{24}\right)⋮273\Rightarrowđpcm\)

a: \(B=5\left(1+5+5^2+5^3\right)+5^5\left(1+5+5^2+5^3\right)\)

\(=156\cdot5\cdot\left(1+5^4\right)\)

\(=780\left(1+5^4\right)⋮30\)

b: \(B=\left(3+3^3+3^5\right)+...+3^{24}\left(3+3^2+3^5\right)\)

\(=273\cdot\left(1+...+3^{24}\right)⋮273\)

4 tháng 1 2018

\(A=1+2+2^2+2^3+...+2^{38}+2^{39}\)

\(A=2^0+2^1+2^2+2^3+...+2^{38}+2^{39}\)

\(A=2^0+2^2\left(1+2^1+2^2+2^3\right)+2^6\left(1+2^1+2^2+2^3\right)+...+2^{36}\left(1+2^1+2^2+2^3\right)\)

\(A=2^0+2^2.15+2^6.15+...+2^{36}.15\)

\(A=2^0+15\left(2^2+2^6+...+2^{36}\right)\)

\(2^0+15=16\)=> 16 là hợp số

\(\Leftrightarrowđpct\)

4 tháng 1 2018

Địa chỉ mua bimbim : Số 38 đường NGuyễn Cảnh Chân TP Vinh Nghệ AN

17 tháng 10 2016

A=3+32+33...+329+330

A=(3+32+33)+...+(328+329+330)

A=3.(1+3+32)+...+328.(1+3+32)

A=3.13+...+328.13

A=13.(3+...+328) chia hết cho 13

17 tháng 10 2016

A= 3(1+3+3^2)+3^4(1+3+3^2)+3^7(1+3+3^2)+...+3^28.(1+3+3^2)

A=(1+3+3^2)(3+3^4+3^7+...+3^25+3^28)

=13.(3+3^4+3^7+...3^28) vậy A chia hết cho 13

17 tháng 3 2018

Ta có:

A = 2 + 22 + 23 + 24 + 25 + 26 + 27 + 28 + 29 + 210

= (2 + 22) + (23 + 24) + (25 + 26) + (27 + 28) + (29 + 210)

= 2 . (1 + 2) + 23 . (1 + 2) + 25 . (1 + 2) + 27 . (1 + 2) + 29 . (1 + 2)

= 2 . 3 + 23 . 3 + 25 . 3 + 27 . 3 + 29 . 3

= 3 . (2 + 23 + 25 + 27 + 29)

Vậy A ⋮ 3

16 tháng 12 2021

cảm ơn bạn nhìuyeu

a: 6x^2-7x-3=0

=>6x^2-9x+2x-3=0

=>(2x-3)(3x+1)=0

=>x=-1/3 hoặc x=3/2

=>ĐPCM

b: 2x^2-5x-3=0

=>2x^2-6x+x-3=0

=>(x-3)(2x+1)=0

=>x=-1/2 hoặc x=3

=>ĐPCM