TÌM GTNN CỦA
A=\(x^2-2x-1\)
GIÚP MÌNH NHA
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
GTNN nghĩa là giá trị nhỏ nhất đó bạn. Bạn biết thì giải giúp nhé
Bài này không tìm được GTNN bạn nhé, với lại điều kiện x,y
1, A= 2x2+1
Ta có : 2x2\(\ge0\forall x\)
\(\Rightarrow2x^2+1\ge1\)
Dấu ''='' xảy ra <=> x=0
Vậy Min A = 1 khi x =0
2.B=2(x - 1)2+4
Ta có 2(x - 1)2\(\ge0\forall x\)
=> B\(\ge4\)
Dấu ''='' xảy ra khi x = 1
Vậy Min B = 4 khi x =1
cái này mình chịu thua
hình như gtnn nó ko có vì tùy theo x và ko có số lớn nhất nhỏ nhất
1) Để A có giá trị nhỏ nhất thì 2x^2 phải có giá trị dương nhỏ nhất. Nhận thấy rằng 2x^2 >= 0 với mọi x.
Dấu = xảy ra khi 2x^2 = 0, khi đó x = 0.
Vậy để A đạt GTNN thì x = 0, khi đó A = 2 * 0^2 + 1 = 0 + 1 = 1.
2) Để B có giá trị nhỏ nhất thì 2(x - 1)^2 phải có giá trị dương lớn nhất. Nhận thấy rằng 2(x - 1)^2 >= 0 với mọi x.
Dấu = xảy ra khi 2(x - 1)^2 = 0, khi đó x = 1.
Vậy để B đạt GTNN thì x = 1, khi đó B = 2(1 - 1)^2 + 4 = 0 + 4 = 4.
Viết được bao nhiêu chữ số có 3 chữ số mà mỗi số chỉ có duy nhất 1 chữ số 4?
mình k'o hiểu lắm . Nếu mình thì mình đã giúp bạn rồi .Cho mình xin lỗi
Ta có ; \(A=\frac{3x^2-2x-1}{\left(x+1\right)^2}\) .Đặt \(y=x+1\Rightarrow x=y-1\), thay vào A :
\(A=\frac{3\left(y-1\right)^2-2\left(y-1\right)-1}{y^2}=\frac{3y^2-8y+4}{y^2}=\frac{4}{y^2}-\frac{8}{y}+3\)
Lại đặt \(t=\frac{1}{y}\), \(A=4t^2-8t+3=4\left(t^2-2t+1\right)-1=4\left(t-1\right)^2-1\ge-1\)
Dấu "=" xảy ra khi và chỉ khi t = 1 <=> y = 1 <=> x = 0
Vậy A đạt giá trị nhỏ nhất bằng -1 khi x = 0
\(\text{Ta có: }A=x^2-2x-1\)
\(=\left(x^2-2x+1\right)-2\)
\(=\left(x-1\right)^2-2\ge-2\)
\(\text{Vậy }MinA=-2,\text{ dấu bằng xảy ra khi và chỉ khi }x-1=0\Leftrightarrow x=1\)
\(A=x^2-2x-1=x^2-2x+1-2=\left(x-1\right)^2-2\ge-2\forall x\)
Dấu "=" xảy ra khi: \(x-1=0\Rightarrow x=1\)
Vậy GTNN của A là -2 tại x = 1