K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2016

Bài này không tìm được GTNN bạn nhé, với lại điều kiện x,y 

14 tháng 9 2016

1. \(x^2+2y^2+2xy-2y+1=0\)

\(\left(x+y\right)^2+y^2-2y+1=0\)

\(\left(x+y\right)^2+\left(y-1\right)^2=0\)

Có: \(\left(x+y\right)^2\ge0;\left(y-1\right)^2\ge0\)

Mà theo bài ra: \(\left(x+y\right)^2+\left(y-1\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}\left(x+y\right)^2=0\\\left(y-1\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}x+y=0\\y-1=0\end{cases}}\Rightarrow\hept{\begin{cases}x+y=0\\y=1\end{cases}}\Rightarrow\hept{\begin{cases}x=-1\\y=1\end{cases}}\)

5 tháng 4 2019

\(P=\frac{2x-1}{x^2-2}\left(ĐKXĐ:x\ne\pm\sqrt{2}\right)\)

\(\Leftrightarrow Px^2-2P=2x-1\)

\(\Leftrightarrow Px^2-2x-2P+1=0\)

*Nếu P = 0 thì ....

*Nếu P khác 0 thì pt trên là bậc 2

\(\Delta'=1-P\left(2P+1\right)=-2P^2-P+1\)

Có nghiệm thì \(\Delta'\ge0\Leftrightarrow-1\le P\le\frac{1}{2}\)

Nên Pmin = -1 

Đến đây dạng này khi biết kết quả thì phân tích dễ r ha , từ làm nốt câu còn lại nhé , tương tự luôn

5 tháng 4 2019

denta ak bạn 

Trả lời:

Áp dụng Bất Đẳng Thức Cauchy-Schwarz ta có:

(3+1)(3x2+y2)≥(3x+y)2

⇒4(3x2+y2)≥(3x+y)2⇒4(3x2+y2)≥(3x+y)2

⇒4(3x2+y2)≥(3x+y)2=12=1⇒4(3x2+y2)≥(3x+y)2=12=1

⇒M=3x2+y2≥14⇒M=3x2+y2≥14

Đẳng thức xảy ra khi x=y=14

2 tháng 4 2020

Ta có:  x + y = 1 => y = 1 - x

Khi đó: P = \(x^3+y^3+2x^2y^2=\left(x+y\right)^3-3xy\left(x+y\right)+2\left(xy\right)^2\)

\(=2\left(xy\right)^2-3xy+1=2\left[\left(xy\right)^2-2.xy.\frac{3}{4}+\frac{9}{16}\right]-\frac{1}{8}\)

\(=2\left(xy-\frac{3}{4}\right)^2-\frac{1}{8}\)

\(=2\left[x\left(1-x\right)-\frac{3}{4}\right]^2-\frac{1}{8}\)

\(=2\left[-x^2+x-\frac{3}{4}\right]^2-\frac{1}{8}\)

\(=2\left[\left(x-\frac{1}{2}\right)^2+\frac{1}{2}\right]^2-\frac{1}{8}\ge\frac{3}{8}\)

Dấu "=" xảy ra <=> x = y =1/2

25 tháng 3 2020

\(\left(2x+\frac{1}{x}\right)^2+\left(2y+\frac{1}{y}\right)^2\)

\(\ge\frac{\left(2x+2y+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\)

\(\ge\frac{\left[2\left(x+y\right)+\frac{4}{x+y}\right]^2}{2}\)

\(=8\)

Dấu "=" xảy  ra tại x=y=1/2

25 tháng 3 2020

Có vẻ kết quả  bị sai Huy ơi.

Diệp thay kết quả cuối cùng 8 ------------> 18 nhé!

7 tháng 3 2016

3x là số chia hết cho 3

=)3x có 5g/trị từ 0->4, mà 2y là số chẵn=)x là số lẻ=)x =1;3

Khi x=1 =)y=5=) x²+y²=26

Khi x=3 =)y=2=)x²+y²=13

=)GTNN của P=13 khi x=3;y=2

Mình ko tính 3x+2y là số âm vì đây là mũ chẵn, vậy nên nếu là số âm nó cũng ko đạt đc GTNN

Mog mn ủng hộ!

23 tháng 7 2017

TA có :

\(H=x^2+2xy+y^2-2x-2y=\left(x^2+y^2+1+2xy-2x-2y\right)-1=\left(x+y-1\right)^2-1\)

Vì  \(\left(x+y-1\right)^2\ge0\) nên \(\left(x+y-1\right)^2-1\ge-1\)

Vậy GTNN của H là -1 khi x+y-1=0 => x+y = 1

23 tháng 7 2017

BẢO HÙNG HÓM HỈNH LỚP TAO LÀM CHO CÒN TAO CHO Ý H

H=\(X^2+2XY+Y^2-2X-2Y\)

H=\(\left(X+Y\right)^2-2\left(X+Y\right)\)

H=\(\left(X+Y\right)^2\)\(-2.\left(X+Y\right).1+1\))-1

H=\(\left(X+Y-1\right)^2-1\)

VẬY GTNN LÀ -1

7 tháng 6 2018

Viết được bao nhiêu chữ số có 3 chữ số mà mỗi số chỉ có duy nhất 1 chữ số 4? 

7 tháng 6 2018

mình k'o hiểu lắm . Nếu mình thì mình đã giúp bạn rồi .Cho mình xin lỗi

12 tháng 10 2018

\(\text{Ta có: }A=x^2-2x-1\)

\(=\left(x^2-2x+1\right)-2\)

\(=\left(x-1\right)^2-2\ge-2\)

\(\text{Vậy }MinA=-2,\text{ dấu bằng xảy ra khi và chỉ khi }x-1=0\Leftrightarrow x=1\)

12 tháng 10 2018

\(A=x^2-2x-1=x^2-2x+1-2=\left(x-1\right)^2-2\ge-2\forall x\)

Dấu "=" xảy ra khi: \(x-1=0\Rightarrow x=1\)

Vậy GTNN của A là -2 tại x = 1