K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2022

a: Xét ΔBAC co BM/BA=BN/BC

nên MN//AC và MN=AC/2

=>AMNC là hình thang

mà góc MAC=90 độ

nen AMNC là hình thang vuông

b: Xét tứ giác ANBH có

M là trung điểm chung của AB và NH

NA=NB

nên ANBH là hình thoi

20 tháng 11 2019

a, N; P lần lượt là trung điểm của AC; BC (gt)

=> NP là đtb của tam giác ABC (Đn)

=> NP // AB (Đl)

=> góc PNA + CAB = 180 (đl)

có góc CAB = 90 do tam giác ABC vuông tại A (gt)

=> góc PNA = 90 

chứng minh tương tự với góc PMA 

=> NPMA Là hình chữ nhật

b, N đối xứng với E qua M (gt)

=> M là trung điểm của NE (đn)

M là trung điểm của AB (gt)

=> ANBE là hình bình hành (dấu hiệu)

30 tháng 11 2021

Xét tứ giác AEBM có

Hai đường chéo AB và EM cắt nhau tại trung điểm của mỗi đường và vuông góc với nhau

nên AEBM là hình thoi

29 tháng 11 2023

Để chứng minh các phần a, b và c, ta sẽ sử dụng các tính chất của tam giác vuông và hình chữ nhật.

 

a. Ta có tam giác ABC vuông tại A, nên theo định lí trung tuyến, ta có DE là đường trung tuyến của tam giác ABC. Do đó, DE song song với cạnh AC. Tương tự, ta có DF song song với cạnh AB. Vậy DE//AC và DF//AB.

 

b. Ta cần chứng minh AEDF là hình chữ nhật. Đầu tiên, ta thấy DE//AC và DF//AB (theo phần a). Khi đó, ta có:

 

- AD = DC (vì D là trung điểm của BC)

- AE = EB (vì E là trung điểm của AB)

- AF = FC (vì F là trung điểm của AC)

 

Vậy ta có các cạnh đối diện của tứ giác AEDF bằng nhau, do đó AEDF là hình chữ nhật.

 

c. Gọi M là điểm đối xứng của D qua AB. Ta cần chứng minh M đối xứng với N qua A. Để làm điều này, ta sẽ chứng minh AM = AN và góc MAN = góc NAM.

 

- Vì M là điểm đối xứng của D qua AB, nên ta có AM = AD.

- Vì N là điểm đối xứng của D qua AC, nên ta có AN = AD.

 

Do đó, ta có AM = AN.

 

- Ta có góc MAD = góc DAB (vì M là điểm đối xứng của D qua AB)

- Ta có góc NAD = góc DAC (vì N là điểm đối xứng của D qua AC)

 

Vì tam giác ABC vuông tại A, nên góc DAB = góc DAC. Từ đó, ta có góc MAD = góc NAD.

 

Vậy ta có AM = AN và góc MAN = góc NAM, do đó M đối xứng với N qua A.

 

Vậy ta đã chứng minh được M đối xứng với N qua A.

29 tháng 11 2021

help với nha

 

30 tháng 11 2021

Xét tứ giác AEBM có

Hai đường chéo AB và EM cắt nhau tại trung điểm của mỗi đường và vuông góc với nhau

nên AEBM là hình thoi

  

a) Xét ΔABC có 

M là trung điểm của AB(gt)

N là trung điểm của BC(gt)

Do đó: MN là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)

Suy ra: MN//AC và \(MN=\dfrac{AC}{2}\)(Định lí 2 về đường trung bình của tam giác)

hay \(MN=\dfrac{8}{2}=4\left(cm\right)\)

Xét tứ giác ACNM có NM//AC(cmt)

nên ACNM là hình thang có hai đáy là NM và AC(Định nghĩa hình thang)

Hình thang ACNM có \(\widehat{CAM}=90^0\)(gt)

nên ACNM là hình thang vuông(Định nghĩa hình thang vuông)

b) Xét tứ giác ABDC có 

N là trung điểm của đường chéo BC(gt)

N là trung điểm của đường chéo AD(gt)

Do đó: ABDC là hình bình hành(Dấu hiệu nhận biết hình bình hành)

mà \(\widehat{CAB}=90^0\)(gt)

nên ABDC là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)