K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2018

A B C D E F H I G K

Trên nửa mặt phẳng bờ BC có chứa điểm A, dựng \(\Delta\)BHC vuông cân tại H. Gọi giao điểm của AH và DF là I; HE giao BC tại G. Dựng điểm K đối xứng với F qua G.

Ta có: ^HBC = ^DBA (=450) => ^HBC + ^ABH = ^DBA + ^ABH => ^ABC = ^DBH             (1)

\(\Delta\)ADB ~ \(\Delta\)CHB (Cùng là tam giác vuông cân) => \(\frac{AB}{CB}=\frac{BD}{BH}\)=> \(\frac{AB}{BD}=\frac{BC}{BH}\)(2)

Từ (1) và (2) => \(\Delta\)ABC ~ \(\Delta\)DBH (c.g.c) => \(\frac{AC}{DH}=\frac{AB}{DB}\)

Mà \(\frac{AB}{DB}=\frac{AC}{AF}\) nên \(\frac{AC}{DH}=\frac{AC}{AF}\)=> DH = AF. Tương tự: FH = AD

Do đó: Tứ giác AFHD là hình bình hành. Do AH cắt DF ở I => I là trung điểm AH và DF (T/c hbh)

Dễ thấy: Tứ giác BHCE là hình vuông, có HE giao BC ở G => G là trung điểm EH và BC

Xét \(\Delta\)AEH: I là trung điểm AH; G là trung điểm EH => IG là đường trung bình \(\Delta\)AEH => IG // AE (3)

\(\Delta\)CGF = \(\Delta\)BGK (c.g.c) => CF = BK => AF = BK (Do CF = AF) 

Lại có: ^DBK = 3600 - ^ABD - ^ABC - ^GBK = 3600 - 450 - ^ABC - ^ACB - 450 = 900 + ^BAC 

            ^DAF = ^BAC + ^BAD + ^CAF = ^BAC + 900

=> ^DAF = ^DBK. Xét \(\Delta\)ADF và \(\Delta\)BDK có: ^DAF = ^DBK; AD=BD; AF=BK => \(\Delta\)ADF = \(\Delta\)DBK (c.g.c)

=> ^ADF = ^BDK => ^ADF + ^BDF = ^BDK + ^BDF => ^ADB = ^FDK = 900

Xét \(\Delta\)DKF : I là trung điểm DF; G là trung điểm FK => IG là đường trung bình \(\Delta\)DKF => IG // DK

Mà DK vuông góc DF (Vì ^FDK = 900) nên IG vuông góc DF  (4)

Từ (3) và (4) => AE vuông góc DF (Quan hệ song song vuông góc) 

C/m tương tự, ta có: CD vuông góc EF; BF vuông góc DE

Từ đó: AE; BF; CD là 3 đường cao trong \(\Delta\)DEF => 3 đường AE; BF; CD đồng qui (đpcm).

18 tháng 10 2018

Vẽ được cái hình chắc cx mệt lắm nhỉ híc

Giair giùm mình vài bài toán mình :) mình hứa sẽ tích cho các bạn thật nhiều1.Cho tam giác ABC.Qua D là trung đểm của cạnh BC ,kẻ một đường thẳng vuông góc với đường phân giác của góc A nó cắt AB ở M và AC ở N. cmr : BM=CN2.Vẽ ra phía ngoài 2 tam giác ABC các tam giác ABD và BCE cùng vuông cân tại B gọi M là trung điểm của AC.Chứng minh rằng DE=2BM3. Cho tam giác ABC có góc A từ.Trong góc A vẽ các...
Đọc tiếp

Giair giùm mình vài bài toán mình :) mình hứa sẽ tích cho các bạn thật nhiều

1.Cho tam giác ABC.Qua D là trung đểm của cạnh BC ,kẻ một đường thẳng vuông góc với đường phân giác của góc A nó cắt AB ở M và AC ở N. cmr : BM=CN

2.Vẽ ra phía ngoài 2 tam giác ABC các tam giác ABD và BCE cùng vuông cân tại B gọi M là trung điểm của AC.Chứng minh rằng DE=2BM

3. Cho tam giác ABC có góc A từ.Trong góc A vẽ các đoạn thẳng AD,AE sao cho AD vuông góc và bằng AB,AE vuông góc và bằng AC .Gọi M là trung điểm của DE .CMR : AM \(\perp\) BC

4.Vẽ ra ngoài tam giác ABC các tam giác ABD vuông cân tại B,ACE vuông cân tại C,Gọi M là trung điểm của DE.Tam giác BMC là tam giác gì ?? Vì sao?

5.Cho hình thang cân ABCD (AB\(//\) CD) có hai đường chéo AC và BD vuông góc với nhau.CMR chiều cao BH bằng đường Trung bình MN

Còn nhiều bài lắm các bn làm giúp mình nha

 

6
18 tháng 12 2018

, Tự vẽ hình và ghi giả thiết kết luận (mình không biết vẽ hình trên máy -_-")

Giải : Từ giả thiết ta có 

D là trung điểm của AB và MO

,E là trung điểm của AC và ON

=> ED là đường trung bình của cả hai tam giác ABC và OMN

Áp dụng định lý đường trung bình vào  tam giác trên ,ta được

\(\hept{\begin{cases}AD//BC,DE//MN\\DE=\frac{1}{2}BC,DE=\frac{1}{2}MN\end{cases}}\Rightarrow\hept{\begin{cases}MN//BC\\MN=BC\end{cases}}\)

Tứ giác MNCB có hai cạnh đối song song và bằng nhau nên nó là hình bình hành

18 tháng 12 2018

Từ từ ,hình như mình làm nhầm đề :) Để mình làm lại đã rồi trả lời bn sau nhé!!!!!@@