Cho hình thang cân ABCD ( AB//CD) có D^=700
a) Tính số đo các góc B^,C^,A^
b) Kẻ đường cao AH và BK của hình thang. Chứng minh DH = CK
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tham khảo đường link này nha bạn:
https://i.imgur.com/aIUXkCl.jpg
a,ˆD=ˆC=700(t/c.hthang.cân)AB//CD⇒ˆA+ˆD=1800(2.góc.trong.cùng.phía)⇒ˆA=1100ˆA=ˆB=1100(t/c.hthang.cân)b,⎧⎪ ⎪ ⎪⎨⎪ ⎪ ⎪⎩AD=BC(t/c.hthang.cân)ˆAHD=ˆBKC(=900)ˆD=ˆC(cm.trên)⇒ΔAHD=ΔBKC(ch−gn)⇒DH=CK
\(7,\)
\(a,\left\{{}\begin{matrix}AB=AC\left(\Delta ABC.cân\right)\\\widehat{B_1}=\widehat{C_1}\left(\dfrac{1}{2}\widehat{ABC}=\dfrac{1}{2}\widehat{ACB}\right)\\\widehat{BAC}.chung\end{matrix}\right.\Rightarrow\Delta AFC=\Delta AEB\left(g.c.g\right)\\ \Rightarrow AF=AE\Rightarrow\Delta AFE.cân.tại.A\)
\(b,\left\{{}\begin{matrix}\widehat{ABC}=\widehat{ACB}\left(\Delta ABC.cân\right)\\BC.chung\\\widehat{B_2}=\widehat{C_2}\left(\dfrac{1}{2}\widehat{ABC}=\dfrac{1}{2}\widehat{ACB}\right)\end{matrix}\right.\Rightarrow\Delta BFC=\Delta CEB\left(g.c.g\right)\)
\(c,\widehat{F_1}=\dfrac{180^0-\widehat{BAC}}{2}\left(\Delta AEF.cân\right);\widehat{ABC}=\dfrac{180^0-\widehat{BAC}}{2}\left(\Delta ABC.cân\right)\\ \Rightarrow\widehat{F_1}=\widehat{ABC}\)
Mà 2 góc này ở vị trí đồng vị nên \(EF//BC\Rightarrow BEFC\) là hình thang
Mà \(\widehat{ABC}=\widehat{ACB}\left(GT\right)\)
Vậy \(BEFC\) là hình thang cân
Bài 8:
a: Xét ΔDBC có
E là trung điểm của BD
M là trung điểm của BC
Do đó: EM là đường trung bình của ΔDBC
Suy ra: EM//DC
b: Xét ΔAEM có
D là trung điểm của AE
DI//EM
Do đó: I là trung điểm của AM
Bài 5:
Xét ΔABC có
\(\dfrac{AE}{EB}=\dfrac{AD}{DC}\left(=1\right)\)
Do đó: DE//BC
Xét tứ giác BEDC có DE//BC
nên BEDC là hình thang
mà \(\widehat{EBC}=\widehat{DCB}\)
nên BEDC là hình thang cân
Áp dụng định nghĩa, tính chất và giả thiết của hình thang cân ta có:
⇒ Δ ADH = Δ BCK
(trường hợp cạnh huyền – góc nhọn)
⇒ DH = CK (cặp cạnh tương ứng bằng nhau)
Vậy DH = CK. (đpcm)
Xét hình thang cân ABCD ( AB // CD )
\(\Rightarrow\hept{\begin{cases}\widehat{D}=\widehat{C}\\AD=BC\end{cases}\left(t/c\right)}\)
Xét \(\Delta ADH=\Delta BCK\)
\(\hept{\begin{cases}\widehat{AHD}=\widehat{BKC}\left(=90^o\right)\\AD=BC\left(cmt\right)\\\widehat{D}=\widehat{C}\left(cmt\right)\end{cases}}\)
\(\Rightarrow\Delta ADH=\Delta BCK\) ( ch - gn )
\(\Rightarrow AH=BK\) ( 2 cạnh tương ứng )
b) Vì \(\Delta ADH=\Delta BCK\left(cmt\right)\)
\(\Rightarrow DK=CK\) ( 2 cạnh tương ứng )
Chúc bạn học tốt !!!
\(a,\widehat{D}=\widehat{C}=70^0\left(t/c.hthang.cân\right)\\ AB//CD\Rightarrow\widehat{A}+\widehat{D}=180^0\left(2.góc.trong.cùng.phía\right)\Rightarrow\widehat{A}=110^0\\ \widehat{A}=\widehat{B}=110^0\left(t/c.hthang.cân\right)\\ b,\left\{{}\begin{matrix}AD=BC\left(t/c.hthang.cân\right)\\\widehat{AHD}=\widehat{BKC}\left(=90^0\right)\\\widehat{D}=\widehat{C}\left(cm.trên\right)\end{matrix}\right.\Rightarrow\Delta AHD=\Delta BKC\left(ch-gn\right)\Rightarrow DH=CK\)