Chứng minh rằng \(\left(5n-2\right)^2-\left(2n-5\right)^2\)luôn chia hết cho 21 với mọi số nguyên n
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng minh rằng: \(n^2\left(n+1\right)+2n\left(n+1\right)\) luôn chia hết cho 6 với mọi số nguyên n.
\(n^2\left(n+1\right)+2n\left(n+1\right)\)
\(=\left(n+1\right)\left(n^2+2n\right)\)
\(=\left(n+1\right)n\left(n+2\right)\)
\(=n\left(n+1\right)\left(n+2\right)\)
vì tích của 3 số tự nhiên liên tiếp chia hết cho 6
Mặt khác n và n+1 và n+2 là 3 số tự nhiên liên tiếp
\(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮6\forall n\left(đpcm\right)\)
n(2n-3)-2n(n+1)
=2n^2-3n-2n^2-2n
=-5n
-5n chia het cho 5 voi moi so nguyên n vi -5 chia het cho 5
vay n(2n-3)-2n(n+1) chia het cho 5
Ta có: \(n\left(2n-3\right)-2n\left(n+1\right)\) = \(2n^2-3n-2n^2-2n\)
= \(-5n\)
Vì \(-5⋮5\) => -5n \(⋮\) 5
=> \(n\left(2n-3\right)-2n\left(n+1\right)\) \(⋮\) 5 với mọi n \(\in\) Z
\(n\left(2n-3\right)-2n\left(n+1\right)\)
\(=2n^2-3n-2n^2-2n\)
\(=-5n\)
\(-5n\)chia hết cho \(5\)với mọi số nguyên \(n\)vì \(-5\)chia hết cho \(5\)
Vậy : \(n\left(2n-3\right)-2n\left(n+1\right)\)chia hết cho \(5\)
Ta có n^2(n+1)+2n(n+1) = n^3+3n^2+2n = n(n^2+3n+2) = n(n+1)(n+2)
Ta thấy n, n+1, n+2 là ba số nguyên liên tiếp với n nguyên
=> trong 3 số n, n+1, n+2 có một số chia hết cho 3, có ít nhất một số chia hết cho 2
=> n(n+1)(n+2) chia hết cho 2*3 = 6 (vì ƯCLN(2;3)=1)
=> đpcm
\(n^2\left(n+1\right)+2n\left(n+1\right)\)
\(=>\left(n+1\right)\left(n^2+2n\right)\)
\(=>n\left(n+1\right)\left(n+2\right)\)
Ta thấy \(n;\left(n+1\right);\left(n+2\right)\)là 3 số tự nhiên liên tiếp
Mà tích của 3 số tn liên tiếp luôn chia hết cho 6
=> \(n^2\left(n+1\right)+2n\left(n+1\right)\)chia hết ch 6 ( đpcm )
Cấm ai chép ...............
Bài giải:
Ta có : (5n + 2)2 – 4 = (5n + 2)2 – 22
= (5n + 2 - 2)(5n + 2 + 2)
= 5n(5n + 4)
Vì 5 5 nên 5n(5n + 4) 5 ∀n ∈ Z.
\((5n + 2)^2 - 4\) \(= (5n +2 )^2 - 2^2\)
\(= (5n +2 - 2) (5n + 2 + 2 )\)
\(= 5n(5n + 4)\)
\(\Rightarrow\) \(5\) \(⋮\) \(5\) nên \(5n(5n +4)\) \(⋮\) \(5\) với mọi số nguyên thuộc \(n\)
Vậy biểu thức \((5n + 2)^2 - 4\) chia hết cho \(5\) với mọi số nguyên thuộc \(n\)
Ta có : \(\left(5n+2\right)^2-4\)
\(=\left(5n+2-2\right).\left(5n+2+2\right)\)
\(=5n\left(5n+4\right)\)
Vì \(5⋮5\) nên \(\left(5n+2\right)^2-4⋮5\forall n\in Z\)
Ta có: \(n^2\left(n+1\right)+2n\left(n+1\right)=\left(n+1\right)\left(n^2+2n\right)=\left(n+1\right)\left[n\left(n+2\right)\right]=n.\left(n+1\right).\left(n+2\right)\)
Vì tích 3 số nguyên liên tiếp luôn chia hết cho 6 nên đa thức trên luôn chia hết hco 6 với mọi số nguyên thuộc n
Theo đề bài ta có:
n2(n+1)+2n(n+1)= (n+1) (n2+2n)
= n(n+1) (n+2)
Vì ta nhận thấy n(n+1) là tích 2 số nguyên liên tiếp (1)
và n(n+1) (n+2) là tích 3 số nguyên liên tiếp (2)
Từ (1) và (2) suy ra:
n(n+1) (n+2) chia hết cho 6 với mọi số nguyên n
Ta có: \(\left(5n-2\right)^2-\left(2n-5\right)^2=\left(5n-2-2n+5\right).\left(5n-2+2n-5\right)\)
\(=\left(3n+3\right)\left(7n-7\right)=3\left(n+1\right).7\left(n-1\right)\)
\(=21\left(n^2-1\right)⋮21\) (điều phải chứng minh)