Các bạn giải giúp mình câu số 3 với ạ. Mình cảm ơn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
12.
\(y=\sqrt{2}sin\left(2x+\dfrac{\pi}{4}\right)\le\sqrt[]{2}\)
\(\Rightarrow M=\sqrt{2}\)
13.
Pt có nghiệm khi:
\(5^2+m^2\ge\left(m+1\right)^2\)
\(\Leftrightarrow2m\le24\)
\(\Rightarrow m\le12\)
14.
\(\Leftrightarrow\left[{}\begin{matrix}cosx=1\\cosx=-\dfrac{5}{3}\left(loại\right)\end{matrix}\right.\)
\(\Leftrightarrow x=k2\pi\)
15.
\(\Leftrightarrow\left[{}\begin{matrix}tanx=-1\\tanx=3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{4}+k\pi\\x=arctan\left(3\right)+k\pi\end{matrix}\right.\)
Đáp án A
16.
\(\dfrac{\sqrt{3}}{2}sinx-\dfrac{1}{2}cosx=\dfrac{1}{2}\)
\(\Leftrightarrow sin\left(x-\dfrac{\pi}{6}\right)=\dfrac{1}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{\pi}{6}=\dfrac{\pi}{6}+k2\pi\\x-\dfrac{\pi}{6}=\dfrac{5\pi}{6}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{3}+k2\pi\\x=\pi+k2\pi\end{matrix}\right.\)
\(\left[{}\begin{matrix}2\pi\le\dfrac{\pi}{3}+k2\pi\le2018\pi\\2\pi\le\pi+k2\pi\le2018\pi\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}1\le k\le1008\\1\le k\le1008\end{matrix}\right.\)
Có \(1008+1008=2016\) nghiệm
1.
\(sin^2x-4sinx.cosx+3cos^2x=0\)
\(\Rightarrow\dfrac{sin^2x}{cos^2x}-\dfrac{4sinx}{cosx}+\dfrac{3cos^2x}{cos^2x}=0\)
\(\Rightarrow tan^2x-4tanx+3=0\)
2.
\(\Leftrightarrow\dfrac{1}{2}cos2x+\dfrac{\sqrt{3}}{2}sin2x=\dfrac{1}{2}\)
\(\Leftrightarrow cos\left(2x-\dfrac{\pi}{3}\right)=\dfrac{1}{2}\)
3.
\(\Leftrightarrow2^2+m^2\ge1\)
\(\Leftrightarrow m^2\ge-3\) (luôn đúng)
Pt có nghiệm với mọi m (đề bài sai)
4.
\(\Leftrightarrow\dfrac{1}{2}sinx-\dfrac{\sqrt{3}}{2}cosx=1\)
\(\Leftrightarrow sin\left(x-\dfrac{\pi}{3}\right)=1\)
\(\Leftrightarrow x-\dfrac{\pi}{3}=\dfrac{\pi}{2}+k2\pi\)
\(\Leftrightarrow x=\dfrac{5\pi}{6}+k2\pi\)
6.
ĐKXĐ: \(cosx\ne0\)
Nhân 2 vế với \(cos^2x\)
\(sin^2x-4cosx+5cos^2x=0\)
\(\Leftrightarrow1-cos^2x-4cosx+5cos^2x=0\)
\(\Leftrightarrow\left(2cosx-1\right)^2=0\)
\(\Leftrightarrow cosx=\dfrac{1}{2}\Rightarrow x=\pm\dfrac{\pi}{3}+k2\pi\)
6.
\(cos^2x+\sqrt{3}sinx.cosx-1=0\)
\(\Leftrightarrow-sin^2x+\sqrt{3}sinx.cosx=0\)
\(\Leftrightarrow sinx\left(sinx-\sqrt{3}cosx\right)=0\)
\(\Leftrightarrow sinx\left(\dfrac{1}{2}sinx-\dfrac{\sqrt{3}}{2}cosx\right)=0\)
\(\Leftrightarrow sinx.sin\left(x-\dfrac{\pi}{3}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\\sin\left(x-\dfrac{\pi}{3}\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=k\pi\\x=\dfrac{\pi}{3}+k\pi\end{matrix}\right.\)
a: \(3H_2+Fe_2O_3\rightarrow2Fe+3H_2O\)
b: \(n_{Fe_2O_3}=\dfrac{16}{160}=0.1\left(mol\right)\)
\(\Leftrightarrow n_{H_2O}=n_{H_2}=0.1\cdot3=0.3\left(mol\right)\)
\(v_{H_2}=0.3\cdot22.4=6.72\left(lít\right)\)
Bài 1 :
\(CT:C_nH_{2n-6}\left(n\ge6\right)\)
\(\%C=\dfrac{12n}{14n-6}\cdot100\%=90.57\%\)
\(\Rightarrow n=8\)
\(CT:C_8H_{10}\)
Bài 2 :
\(n_{CO_2}=\dfrac{17.6}{44}=0.4\left(mol\right)\)
\(CT:C_nH_{2n+1}OH\)
\(\Rightarrow n_{ancol}=\dfrac{n_{CO_2}}{n}=\dfrac{0.4}{n}\left(mol\right)\)
\(M_A=\dfrac{7.4}{\dfrac{0.4}{n}}=\dfrac{37}{2}n\left(\dfrac{g}{mol}\right)\)
\(\Rightarrow14n+18=\dfrac{37}{2}n\)
\(\Rightarrow n=4\)
\(CT:C_4H_9OH\)
\(CTCT:\)
\(B1:\)
\(CH_3-CH_2-CH_2-CH_2-OH:butan-1-ol\)
\(B2:\)
\(CH_3-CH_2-CH\left(CH_3\right)-OH:butan-2-ol\)
\(B2:\)
\(CH_3-CH\left(CH_3\right)-CH_2-OH:2-metylpropan-1-ol\)
\(B3:\)
\(C\left(CH_3\right)_3-OH:2-metylpropan-2-ol\)
Câu 3:
<tóm tắt bạn tự làm>
MCD:R1ntR2ntR3
Điện trở R3 là
ta có:\(R_{tđ}=R_1+R_2+R_3\Rightarrow R_3=R_{tđ}-R_1-R_2=55-15-30=10\left(\Omega\right)\)