K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 9 2021

1) \(x^4-10x^2+1=0\)

\(\Leftrightarrow\left(x^2-5\right)^2=24\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-5=2\sqrt{6}\\x^2-5=-2\sqrt{6}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{5+2\sqrt{6}}\\x=\sqrt{5-2\sqrt{6}}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}\\x=\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{3}+\sqrt{2}\\x=\sqrt{3}-\sqrt{2}\end{matrix}\right.\)

Vậy \(x=\sqrt{2}+\sqrt{3}\) là một nghiệm của pt

 

 

19 tháng 9 2021

2) Ta có: \(a-b=\sqrt{3}+1,b-c=\sqrt{3}-1\)

\(\Rightarrow a-c=a-b+b-c=\sqrt{3}+1+\sqrt{3}-1=2\sqrt{3}\)

\(A=a^2+b^2+c^2-ab-bc-ac\)

\(\Rightarrow2A=2a^2+2b^2+2c^2-2ab-2ac-2bc\)

\(=\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)\)

\(=\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\)

\(\left(\sqrt{3}+1\right)^2+\left(\sqrt{3}-1\right)^2+\left(2\sqrt{3}\right)^2\)

\(=3+2\sqrt{3}+1+3-2\sqrt{3}+1+12=20\)

\(\Rightarrow A=10\in N\)

2 tháng 7 2023

\(a,x+\dfrac{1}{2}=\dfrac{3}{4}\\ x=\dfrac{3}{4}-\dfrac{1}{2}\\ x=\dfrac{1}{2}\\ b,-\dfrac{2}{3}-x=1\\x=-\dfrac{2}{3}-1\\ x=-\dfrac{5}{3}\\ d,\dfrac{1}{4}+\dfrac{3}{4}:x=\dfrac{5}{2}\\ \dfrac{3}{4}:x=\dfrac{5}{2}-\dfrac{1}{4}\\ \dfrac{3}{4}:x=\dfrac{9}{4}\\ x=\dfrac{3}{4}:\dfrac{9}{4}\\ x=\dfrac{1}{3}\\ e,\left(x+\dfrac{1}{4}\right)\cdot\dfrac{3}{4}=-\dfrac{5}{8}\\ x+\dfrac{1}{4}=-\dfrac{5}{8}:\dfrac{3}{4}\\ x+\dfrac{1}{4}=\dfrac{5}{6}\\ x=\dfrac{5}{6}-\dfrac{1}{4}\\ x=\dfrac{7}{12}\)

\(g,\dfrac{x-3}{15}=\dfrac{-2}{5}\\ 5\left(x-3\right)=-30\\ x-3=-6\\ x=-6+3\\ x=-3\\ h,\dfrac{x}{-2}=\dfrac{-8}{x}\\ x^2=16\\ x=\pm\sqrt{16}\\ x=\pm4\\ k,\dfrac{x+2}{3}=\dfrac{x-4}{5}\\ 5\left(x+2\right)=3\left(x-4\right)\\ 5x+10=3x-12\\ 5x-3x=-12-10\\ 2x=-22\\ x=-11\)

\(m,\left(2x-1\right)^2=4\\ \Rightarrow\left[{}\begin{matrix}2x-1=2\\2x-1=-2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=3\\2x=-1\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{1}{2}\end{matrix}\right.\)

2 tháng 7 2023

loading...  loading...  

29 tháng 5 2022

Hướng dẫn: A đạt GTLN khi \(\dfrac{1}{A}\) đạt GTNN

Ta có: \(x^2+2\ge0\forall x\)

\(\Rightarrow A=\dfrac{1}{x^2+2}\le\dfrac{1}{2}\forall x\)

Vậy GTLN của A là 1/2

=> A

29 tháng 5 2022

Câu 2: B đạt GTLN khi và chỉ khi x2 đạt giá trị nhỏ nhất

⇔ x2=0 ⇒B = 10 - 0= 0 

  Chọn đáp án B nhe

Câu 3: Có A= 4x - 2x2= (-2x+ 4x - 1) + 1=\(-2\left(x^2-2x+1\right)+1\)

⇔ A= \(-2\left(x-1\right)^2+1\le1\)

Chọn đáp án B nha

 

7 tháng 6 2021

B

1 is writing

2 is losing

3 is having

4 is staying

5 amnot telling

6 is always using

7 are having

8 Are you playing

C

1 are top musicians studying => Do top musician study

2 don't touch => aren't touching

3 does

4 is Christine listening

5 am usually buying => usually buy

6 is starting => starts

7 Does your team win => is your team winning

8 are enjoying => enjoy

7 tháng 6 2021

:v

 

Câu 1: A
Câu 2: B

Câu 3: D
Câu 4: A

Câu 5: C

Câu 6: B

Câu 7: A

Câu 9: B

p: \(\dfrac{5}{1\cdot2}+\dfrac{5}{2\cdot3}+...+\dfrac{5}{50\cdot51}\)

\(=5\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{50\cdot51}\right)\)

\(=5\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{50}-\dfrac{1}{51}\right)\)

\(=5\cdot\left(1-\dfrac{1}{51}\right)=5\cdot\dfrac{50}{51}=\dfrac{250}{51}\)

q: \(\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+...+\dfrac{1}{210}\)

\(=\dfrac{2}{6}+\dfrac{2}{12}+\dfrac{2}{20}+...+\dfrac{2}{420}\)

\(=2\left(\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+...+\dfrac{1}{420}\right)\)

\(=2\left(\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{20\cdot21}\right)\)

\(=2\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{20}-\dfrac{1}{21}\right)\)

\(=2\left(\dfrac{1}{2}-\dfrac{1}{21}\right)=2\cdot\dfrac{19}{42}=\dfrac{19}{21}\)

Câu 1: A
Câu 2: B

Câu 3: D
Câu 4: A

Câu 5: C

Câu 6: B

Câu 7: A

Câu 9: B