2006^2 - 2005^2 + 2004^2 - 2003^2 + .....+ 2^2 - 1^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\frac{x^2-2008}{2007}+\frac{x^2-2007}{2006}+\frac{x^2-2006}{2005}=\frac{x^2-2005}{2004}+\frac{x^2-2004}{2003}+\frac{x^2-2003}{2002}\)
=> \(\frac{x^2-2008}{2007}+1+\frac{x^2-2007}{2006}+1+\frac{x^2-2006}{2005}+1=\frac{x^2-2005}{2004}+1+\frac{x^2-2004}{2003}+1+\frac{x^2-2003}{2002}+1\)
=> \(\frac{x^2-2008}{2007}+\frac{2007}{2007}+\frac{x^2-2007}{2006}+\frac{2006}{2006}+\frac{x^2-2006}{2005}+\frac{2005}{2005}=\frac{x^2-2005}{2004}+\frac{2004}{2004}+\frac{x^2-2004}{2003}+\frac{2003}{2003}+\frac{x^2-2003}{2002}+\frac{2002}{2002}\)
=> \(\frac{x^2-1}{2007}+\frac{x^2-1}{2006}+\frac{x^2-1}{2005}=\frac{x^2-1}{2004}+\frac{x^2-1}{2003}+\frac{x^2-1}{2002}\)
=> \(\frac{x^2-1}{2007}+\frac{x^2-1}{2006}+\frac{x^2-1}{2005}-\frac{x^2-1}{2004}-\frac{x^2-1}{2003}-\frac{x^2-1}{2002}=0\)
=> \(\left(x^2-1\right)\left(\frac{1}{2007}+\frac{1}{2006}+\frac{1}{2005}-\frac{1}{2004}-\frac{1}{2003}-\frac{1}{2002}\right)=0\)
=> \(x^2-1=0\)
=> \(x^2=1\)
=> \(x=\pm1\)
Vậy phương trình có 2 nghiệm là x = 1, x = -1 .
\(M=2006^2-2005^2+2004^2-2003^2+...+2^2-1^2\)
\(M=\left(2006-2005\right)\left(2006+2005\right)+\left(2004-2003\right)\left(2004+2003\right)+...+\left(2-1\right)\left(2+1\right)\)
\(M=2006+2005+2004+2003+...+1+2\)
Trở về bài toán lớp 5 :v
\(M=2013021\)
S=(1+2-3-4)+(5+6-7-8)+......+(2001+2002-2003-2004)+(2005+2006)
S=(-4)+(-4)+.......+(-4)+(2005+2006)
Dãy S có 2004-1:1+1=2004 số hạng
Dãy S có 2004:4=501 số -4
Do đó S=-4.501=-2004
S=-2004+(2005+2006)
S=-2004+4011
S=2007
1,S=(1-2-3+4)+(5-6-7+8)+.......+(2001-2002-2003+2004)
S=0+0+.........................+0
S=0
2,hình như pan gi sai đề
ta có 12 - 22 = - 3
32 - 42 = - 7
.................
20052 - 20062 = -4011
-{(4011+3)[(4011-3):4+1]:2} = -2013021
Cho f( x ) = x mũ 2005- 2006.x mũ 2004+ 2006.x mũ 2003-....- 2006.x mũ 2+ 2006.x mũ 1.
Tính f( 2005)
x=2005
nên x+1=2006
\(f\left(x\right)=x^{2005}-x^{2004}\left(x+1\right)+x^3\left(x+1\right)-...+x\left(x+1\right)\)
\(=x^{2005}-x^{2005}-x^{2004}+x^{2004}+...-x^3-x^2+x^2+x\)
=x=2005
\(2006^2-2005^2+2004^2-2003^3+...+2^2-1^2\)
\(=\left(2006-2005\right).\left(2006+2005\right)+\left(2004-2003\right).\left(2004+2003\right)+...+\left(2-1\right).\left(2+1\right)\)
\(=2006+2005+2004+...+2+1\)
\(=\left(2006+1\right)+\left(2005+2\right)+...\left(1003+1004\right)\)
\(=2007.1003\)
\(=....\)
~ hok tốt ~
@Phan thi hong nhung, sao từ bước thứ 2 ra đc bước thứ 3 vậy