Tam giác ABC có G là trọng tâm . M là điểm bất kì trong tam giác . GM cắt AB, AC ,BC tại C' , B' , A' . Chung minh
\(\dfrac{MA'}{GA'}\)+\(\dfrac{MB'}{GB'}\)+\(\dfrac{MC'}{GC'}\)=3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) -Xét △ABM có: \(EG\)//\(BM\) (gt)
=>\(\dfrac{BE}{AE}=\dfrac{MG}{AG}\) (định lí Ta-let).
=>\(BE.AG=AE.MG\).
b) -Ta có: \(BM\)//\(d\) (gt) ; \(CN\)//\(d\) (gt)
=>\(BM\)//\(CN\).
- Xét △BMD và △CND có:
\(\widehat{BMD}=\widehat{CND}\) (\(BM\)//\(CN\) và so le trong).
\(BD=CD\) (D là trung điểm AB).
\(\widehat{BDM}=\widehat{CDN}\) (đối đỉnh).
=>△BMD = △CND (c-g-c).
=>\(MD=ND\) (2 cạnh tương ứng).
*\(GM+GN=GD-MD+GD+ND=2GD\)
Bạn tham khảo ở phần câu hỏi tương tự nhé.
https://olm.vn/hoi-dap/detail/191084232755.html
a) Ta có : AC = AB/tanC = 5/tan30o = \(5\sqrt{3}\) (cm)
BC = AB/sinC = 5/sin30o = 10 (cm)
góc B = 90 độ - góc C = 90 độ - 30 độ = 60 độ
b) AM = 1/2AC = \(\frac{1}{2}.5\sqrt{3}=\frac{5\sqrt{3}}{2}\) (cm)
c) Ta tính được : \(MB=\sqrt{AM^2+AB^2}=\sqrt{\left(\frac{5\sqrt{3}}{2}\right)^2+5^2}=\frac{5\sqrt{7}}{2}\) (cm)
\(\Rightarrow BG=\frac{2}{3}BM=\frac{2}{3}.\frac{5\sqrt{7}}{2}=\frac{5\sqrt{7}}{3}\) (cm)
\(GM=\frac{1}{3}BM=\frac{1}{3}.\frac{5\sqrt{7}}{2}=\frac{5\sqrt{7}}{6}\left(cm\right)\)
N ở đâu ???
+) Gọi AP là đường trung tuyến của \(\Delta\)ABC, giao điểm của tia AM và BC là D. Qua M kẻ đường thẳng song song với AP, nó cắt BC tại N.
Xét \(\Delta\)PDA có: M thuộc AD; N thuộc PD; MN // AP => \(\frac{MN}{AP}=\frac{DM}{DA}\Rightarrow\frac{DM}{DA}=\frac{MN}{3.GP}\) (ĐL Thales) (*)
Xét \(\Delta\)GA'P có: M thuộc GA'; N thuộc PA'; MN // GP => \(\frac{MN}{GP}=\frac{MA'}{GA'}\), thế vào (*) được
\(\frac{DM}{DA}=\frac{1}{3}.\frac{MA'}{GA'}\). Chứng minh tương tự: \(\frac{EM}{EB}=\frac{1}{3}.\frac{MB'}{GB'};\frac{FM}{FC}=\frac{1}{3}.\frac{MC'}{GC'}\)
Suy ra \(\frac{1}{3}\left(\frac{MA'}{GA'}+\frac{MB'}{GB'}+\frac{MC'}{GC'}\right)=\frac{DM}{DA}+\frac{EM}{EB}+\frac{FM}{FC}\)
\(\Rightarrow\frac{MA'}{GA'}+\frac{MB'}{GB'}+\frac{MC'}{GC'}=3\left(\frac{DM}{DA}+\frac{EM}{EB}+\frac{FM}{FC}\right)\)(1)
+) Gọi giao điểm của BM và AC là E; CM với AB là F. Qua M kẻ 2 đường thẳng song song với AB và BC, chúng cắt AC lần lượt tại H và K.
Áp dụng ĐL Thales, ta có các tỉ số:
\(\frac{DM}{DA}=\frac{CK}{AC};\frac{FM}{FC}=\frac{AH}{AC};\frac{EM}{EB}=\frac{EH}{EA}=\frac{EK}{EC}=\frac{EH+EK}{EA+EC}=\frac{HK}{AC}\)
Cộng các tỉ số trên, ta được: \(\frac{DM}{DA}+\frac{EM}{EB}+\frac{FM}{FC}=\frac{CK+HK+AH}{AC}=\frac{AC}{AC}=1\)(2)
+) Từ (1) và (2) => \(\frac{MA'}{GA'}+\frac{MB'}{GB'}+\frac{MC'}{GC'}=3\) (đpcm).