K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 2 2022

a) -Xét △ABM có: \(EG\)//\(BM\) (gt)

=>\(\dfrac{BE}{AE}=\dfrac{MG}{AG}\) (định lí Ta-let).

=>\(BE.AG=AE.MG\).

b) -Ta có: \(BM\)//\(d\) (gt) ; \(CN\)//\(d\) (gt)

=>\(BM\)//\(CN\).

- Xét △BMD và △CND có:

\(\widehat{BMD}=\widehat{CND}\) (\(BM\)//\(CN\) và so le trong).

\(BD=CD\) (D là trung điểm AB).

\(\widehat{BDM}=\widehat{CDN}\) (đối đỉnh).

=>△BMD = △CND (c-g-c).

=>\(MD=ND\) (2 cạnh tương ứng).

*\(GM+GN=GD-MD+GD+ND=2GD\)

 

16 tháng 1 2024

 

Xét 2 tam giác AMG và ABH ta có:

\(\widehat{BAH}\) chung 

\(\widehat{AMG}=\widehat{ABH}\) (cặp góc đồng vị do BH//MG) 

\(\Rightarrow\Delta AMG\sim\Delta ABH\left(g.g\right)\) 

\(\Rightarrow\dfrac{AB}{AM}=\dfrac{AH}{AG}\) (1) 

Xét 2 tam giác ANG và ACK có:

\(\widehat{CAK}\) chung 

\(\widehat{ANG}=\widehat{ACK}\) (cặp góc đồng vị do CK//GN) 

\(\Rightarrow\Delta ANG\sim\Delta ACK\left(g.g\right)\)

\(\Rightarrow\dfrac{AC}{AN}=\dfrac{AK}{AG}\) (2) 

Xét hai tam giác BOH và COK ta có: 

\(\widehat{BOH}=\widehat{COK}\) (đối đỉnh) 

\(BO=CO\) (AO là đường trung tuyến nên O là trung điểm của BC) 

\(\widehat{HBO}=\widehat{KCO}\) (so le trong vì BH//MN và CK//MN ⇒ BH//CK) 

\(\Rightarrow\Delta BOH=\Delta COK\left(g.c.g\right)\) 

\(\Rightarrow HO=OK\) (hai cạnh t.ứng) 

\(\Rightarrow HK=2HO\)

Ta lấy (1) + (2) \(\Rightarrow\dfrac{AB}{AM}+\dfrac{AC}{AN}=\dfrac{AH+AK}{AG}=\dfrac{AH+AH+HK}{AG}=\dfrac{2AH+HK}{AG}\) 

\(=\dfrac{2AH+2HO}{AG}=\dfrac{2\left(AH+HO\right)}{AG}=\dfrac{2AO}{AG}\) 

Mà G là trọng tâm của tam giác ABC \(\Rightarrow AO=\dfrac{3}{2}AG\) 

\(\Rightarrow\dfrac{AB}{AM}+\dfrac{AC}{AN}=\dfrac{2\cdot\dfrac{3}{2}AG}{AG}=2\cdot\dfrac{3}{2}=3\left(đpcm\right)\)