K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 6 2021

undefined

25 tháng 10 2021

a: Xét ΔAHD có

M là trung điểm của HA

N là trung điểm của HD

Do đó: MN là đường trung bình của ΔAHD

Suy ra: MN//AD

Bài 1: Cho tam giác ABC, các trung tuyến BM và CN cắt nhau ở G. Gọi P là điểm dối xứng của điểm M qua G. Gọi Q là điểm đối xứng của điểm N qua G.Tứ giác MNPQ là hình gì? Vì sao ?Bài 2: Cho hình bình hành ABCD. Lấy hai điểm E, F theo thứ tự thuộc AB và CD sao cho AE = CF. Lấy hai điểm M, N theo thứ tự thuộc BC và AD sao cho CM = AN. Chứng minh rằng :a) MENF là hình bình hành.b) Các đường thẳng AC, BD, MN,...
Đọc tiếp

Bài 1: Cho tam giác ABC, các trung tuyến BM và CN cắt nhau ở G. Gọi P là điểm dối xứng của điểm M qua G. Gọi Q là điểm đối xứng của điểm N qua G.Tứ giác MNPQ là hình gì? Vì sao ?

Bài 2: Cho hình bình hành ABCD. Lấy hai điểm E, F theo thứ tự thuộc AB và CD sao cho AE = CF. Lấy hai điểm M, N theo thứ tự thuộc BC và AD sao cho CM = AN. Chứng minh rằng :

a) MENF là hình bình hành.

b) Các đường thẳng AC, BD, MN, EF đồng quy.

Bài 3: Cho hình bình hành ABCD. E,F lần lượt là trung điểm của AB và CD.

a) Tứ giác DEBF là hình gì? Vì sao?

b) C/m 3 đường thẳng AC, BD, EF đồng qui.

c) Gọi giao điểm của AC với DE và BF theo thứ tự là M và N. Chứng minh tứ giác EMFN là hình bình hành.

Bài 4: Cho (ABC. Gọi M,N lần lượt là trung điểm của BC,AC. Gọi H là điểm đối xứng của N qua M.Chứng minh tứ giác BNCH và ABHN là hình bình hành.

Bài 5: Cho hình bình hành ABCD. E,F lần lượt là trung điểm của AB và CD.

a) Tứ giác DEBF là hình gì? Vì sao?

b) C/m 3 đường thẳng AC, BD, EF đồng qui.

c) Gọi giao điểm của AC với DE và BF theo thứ tự là M và N. Chứng minh tứ giác EMFN là hình bình hành.

Bài 6 : Cho tứ  giác ABCD biết số đo của các góc A; B; C; D tỉ lệ thuận với5; 8; 13 và 10.

          a/ Tính số đo các góc của tứ giác ABCD

          b/ Kéo dài hai cạnh AB và DC cắt nhau ở E, kéo dài hai cạnh AD và BC cắt nhau ở F. Hai tia phân giác của các góc AED và góc AFB cắt nhau ở O. Phân giác của góc AFB cắt các cạnh CD và AB tại M và N. Chứng minh O là trung điểm  của đoạn MN.

Bài 7: Cho hình thang ABCD ( AB//CD).

          a/ Chứng minh rằng nếu hai tia phân giác của hai góc A và D cùng đi qua trung điểm F của cạnh bên BC thì cạnh bên AD bằng tổng hai đáy.

          b/ Chứng minh rằng nếu AD = AB + CD thì hai tia phân giác của hai góc A và D cắt nhau tại trung điểm của cạnh bên BC.

0

a: Xét tứ giác MCDN có

MC//DN

MC=DN

MC=CD

=>MCDN là hình thoi

b: Xét ΔCMD có CM=CD và góc C=60 độ(=góc BAD)

nên ΔCMD đều

=>góc CMD=60 độ

góc BMD+góc CMD=180 độ(kề bù)

=>góc BMD=180-60=120 độ

=>góc BMD=góc B

Xét tứ giác ABMD có

BM//AD

góc ABM=góc BMD

=>ABMD là hình thang cân

=>AM=BD

c: Xét ΔKAD có BM//AD

nên BM/AD=KM/KD=KB/KA

=>KM/KD=KB/KA=1/2

=>Mlà trung điểm của KD, B là trung điểm của KA

Xét ΔKAD có

AM,DB,KN là trung tuyến

=>AM,DB,KN đồng quy

16 tháng 10 2016

a) Xét tam giác AHD, có: 
* M,N lần lượt là trung điểm của AH, DH (gt)
=> MN là đường trung bình của tam giác AHD
=> MN // AD (t/c) (đpcm)

b) Ta có: BC // AD (ABCD là hình chữ nhật)
=> MN // BI (I thuộc BC) (1)

Ta lại có: I là trung điểm BC (gt)
=> BI = AD : 2 (BC = AD)
Mà MN = AD :2 (MN là đường trung bình tam giác AHD)
=> BI = MN (2)

Từ (1), (2) => MBIN là hình bình hành (đpcm)

c) Xét tam giác AHN vuông tại N có:
* NM là trung tuyến (M là trung điểm AH)
=> NM = MA = MH (hệ quả)
=> tam giác AMN là tam giác cân tại M
Mà MB là đường nối từ đỉnh của tam giác cân AMN
=> MB là đường cao của tam giác AMN
=> góc AMB = 90 độ
=> AD vuông góc với MB
Mà MB // ID (MDIB là hình bình hành)
=> ID vuông góc với AD
=> góc ANI = 90 độ

P/S: Không chắc câu c) cho lắm.
 

22 tháng 12 2023

loading... a) Do M là trung điểm của AB (gt)

⇒ BM = AM = AB : 2

Do N là trung điểm của CD (gt)

⇒ CN = DN = CD : 2

Do ABCD là hình bình hành (gt)

⇒ AB = CD và AB // CD

⇒ BM = AB : 2 = CD : 2 = DN

Do AB // CD (cmt)

⇒ BM // DN

Tứ giác BMDN có:

BM // DN (cmt)

BM = DN (cmt)

⇒ BMDN là hình bình hành

b) Do BMDN là hình bình hành (cmt)

⇒ BN // DM

⇒ ∠AMD = ∠MBN (đồng vị) (1)

Do AB // CD (cmt)

⇒ ∠MBN = ∠BNC (so le trong) (2)

Từ (1) và (2) ⇒ ∠AMD = ∠BNC

c) Do ABCD là hình bình hành

I là trung điểm của AC (gt)

⇒ I là trung điểm của BD

Do BMDN là hình bình hành (cmt)

I là trung điểm của BD (cmt)

⇒ I là trung điểm của MN

⇒ M, I, N thẳng hàng

12 tháng 11

Alô

 

16 tháng 9 2016

a) vì DNBI là hbh => DN = BI

cmtt NE = KC 

mà DN = NE 

=> BI = KC(1)

ta có KC song song vs NE ( hbh) , BI song song vs DN  (hbh) mà DN và NE thg hàng => BI song song vs KC (2)

Từ 1 và 2 => BIKC là hbh

ta có BC là đg chéo của hbh BIKC mà M là tđ của BC

=> đg chéo IK đi qua trung điểm M của BC => M , I , K thg hàng

12 tháng 11 2016

Bạn thùy dung chưa đọc kĩ đề bài ' đoạn BD mà '

23 tháng 10 2021

a: Xét tứ giác DEBF có

BE//DF

BE=DF

Do đó: DEBF là hình bình hành