1+1+2+1-2-1-1-1+10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
a) Gọi dãy đó là A, ta có:
\(A=\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2014}}\)
\(2A=\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2013}}\)
\(2A-A=\left(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2013}}\right)-\left(\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2014}}\right)\)
\(A=\dfrac{1}{2}-\dfrac{1}{2^{2014}}\)
Vì \(\dfrac{1}{2}< 1;\dfrac{1}{2^{2014}}< 1\) nên \(\dfrac{1}{2}-\dfrac{1}{2^{2014}}< 1\)
\(\Rightarrow A< 1\)
b) \(A=\dfrac{10^{11}-1}{10^{12}-1}\) và \(B=\dfrac{10^{10}+1}{10^{11}+1}\)
Ta có:
\(A=\dfrac{10^{11}-1}{10^{12}-1}\)
\(10A=\dfrac{10^{12}-10}{10^{12}-1}\)
\(10A=\dfrac{10^{12}-1+9}{10^{12}-1}\)
\(10A=1+\dfrac{9}{10^{12}-1}\)
Tương tự:
\(B=\dfrac{10^{10}+1}{10^{11}+1}\)
\(10B=\dfrac{10^{11}+10}{10^{11}+1}\)
\(10B=\dfrac{10^{11}+1+9}{10^{11}+1}\)
\(10B=1+\dfrac{9}{10^{11}+1}\)
Vì \(\dfrac{9}{10^{12}-1}< \dfrac{9}{10^{11}+1}\) nên \(10A< 10B\)
\(\Rightarrow A< B\)
\(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
\(A=\left(1+\frac{1}{3}+...+\frac{1}{9}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{10}\right)\)
\(A=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{9}+\frac{1}{10}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{10}\right)\)
\(A=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{9}+\frac{1}{10}\right)-\left(1+\frac{1}{2}+...+\frac{1}{5}\right)\)
\(A=\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+...+\frac{1}{10}\)
\(B=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{10}\right)\)
\(B=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{5}\right)\)
Vậy A = B và A = 1/6 + 1/7 + 1/8 + 1/9 + 1/10
1/ A= \(\left(\frac{1}{1.2}\right)+\left(\frac{1}{3.4}\right)+...+\left(\frac{1}{9.10}\right)\)
B=(1/1+1/2+1/3+...+1/10)- (1/1+1/2+...+1/5)
<=> B=1/6+1/7+1/8+1/9+1/10.
Bài làm:
Ta có: \(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\frac{1}{7}-\frac{1}{8}+\frac{1}{9}-\frac{1}{10}\)
\(A=\left(1+\frac{1}{3}+...+\frac{1}{9}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{10}\right)\)
\(A=\left[\left(1+\frac{1}{3}+...+\frac{1}{9}\right)+\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{10}\right)\right]-\left[\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{10}\right)+\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{10}\right)\right]\)
\(A=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{10}\right)=B\)
Vậy A = B
2 = 1 + 1 6 = 2 + 4 8 = 5 + 3 10 = 8 + 2
3 = 1 + 2 6 = 3 + 3 8 = 4 + 4 10 = 7 + 3
4 = 3 + 1 7 = 1 + 6 9 = 8 + 1 10 = 6 + 4
4 = 2 + 2 7 = 5 + 2 9 = 6+ 3 10 = 5 + 5
5 = 4 + 1 7 = 4 + 3 9 = 7 + 2 10 = 10 + 0
5 = 3 + 2 8 = 7 + 1 9 = 5 + 4 10 = 0 + 10
6 = 5 + 1 8 = 6 + 2 10 = 9 + 1 1 = 1 + 0
1 + 1 + 2 + 1 - 2 -1 -1 -1 + 10
= 10
Hok tớt
1+1+2+1-2-1-1-1+10 = 10
kb nha