Cho đa thức: \(A=x^4-6x^3+27x^2-54x+32\)
Phân tích A thành nhân tử
CMR: Đa thức A luôn có giá trị chẵn \(\forall x\in Z\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
\(A=x^4-6x^3+27x^2-54x+32\)
\(=(x^4-x^3)-(5x^3-5x^2)+(22x^2-22x)-(32x-32)\)
\(=x^3(x-1)-5x^2(x-1)+22x(x-1)-32(x-1)\)
\(=(x-1)(x^3-5x^2+22x-32)\)
\(=(x-1)(x^3-2x^2-3x^2+6x+16x-32)\)
\(=(x-1)[x^2(x-2)-3x(x-2)+16(x-2)]\)
\(=(x-1)(x-2)(x^2-3x+16)\)
Ta thấy $x-1,x-2$ là 2 số nguyên liên tiếp nên $(x-1)(x-2)\vdots 2$
Do đó: \(A=(x-1)(x-2)(x^2-3x+16)\vdots 2\), hay $A$ luôn có giá trị chẵn (đpcm)
f(x) = x4 + 6x3 +11x2 + 6x
\(=x^4+x^3+5x^3+5x^2+6x^2+6x\)
\(=\left(x^4+x^3\right)+\left(5x^3+5x^2\right)+\left(6x^2+6x\right)\)
\(=x^3\left(x+1\right)+5x^2\left(x+1\right)+6x\left(x+1\right)\)
\(=\left(x+1\right)\left(x^3+5x^2+6x\right)\)
\(=x\left(x+1\right)\left(x^2+5x+6\right)\)
\(=x\left(x+1\right)\left[x^2+2x+3x+6\right]\)
\(=x\left(x+1\right)\left[\left(x^2+2x\right)+\left(3x+6\right)\right]\)
\(=x\left(x+1\right)\left[x\left(x+2\right)+3\left(x+2\right)\right]\)
\(=x\left(x+1\right)\left(x+2\right)\left(x+3\right)\)
b)Ta có
\(f\left(x\right)+1=x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1\)
\(=\left[x\left(x+3\right)\right].\left[\left(x+1\right)\left(x+2\right)\right]+1\)
\(=\left(x^2+3x\right).\left(x^2 +3x+2\right)+1\)
\(=\left(x^2+3x+1-1\right).\left(x^2+3x+1+1\right)+1\)
\(=\left[\left(x^2+3x+1\right)-1\right].\left[\left(x^2+3x+1\right)+1\right]+1\)
\(=\left(x^2+3x+1\right)^2-1+1=\left(x^2+3x+1\right)^2\)
Vậy với mọi x nguyên thì f(x) + 1 luôn có giá trị là 1 số chính phương
a/ \(x^3-5x^2+6x+3=\left(x-2\right)\left(x^2-3x\right)+3.\)( Dùng phép chia đa thức)
Để A chia hết cho x-2 thì 3 phải chia hết cho x-2 => x-2 là ước của 3
=> x-2={3-; -1; 1; 3} => x={-1; 1; 3; 5}
b/ Chia F(x) cho x-1
\(f\left(x\right)=\left(x-1\right)\left(x^2-5x+6\right)\)
Giải phương trình bậc 2 \(x^2-5x+6=0\) để tìm nghiệm còn lại
\(A=x^4-6x^3+27x^2-54x+32\)
\(=x^4-2x^3-4x^3+8x^2+19x^2-38x-16x+32\)
\(=x^3\left(x-2\right)-4x^2\left(x-2\right)+19x\left(x-2\right)-16\left(x-2\right)\)
\(=\left(x^3-4x^2+19x-16\right)\left(x-2\right)\)
A= x^4 - 6x^3 + 27x^2 - 54x + 32
A= x^4 - 3x^3 + 2x^2 - 3x^3 + 9x^2 - 6x + 16x^2 - 48x + 32
A= x^2(x^2 - 3x + 2) - 3x(x^2 - 3x + 2) + 16(x^2 - 3x + 2)
A= (x^2 - 3x + 2) (x^2 - 3x + 16)
Chúc bạn học giỏi nhé!
\(x^2-y^2+4x+4\)
\(=\left(x+2\right)^2-y^2\)
\(=\left(x+2+y\right)\left(x+2-y\right)\)
\(4x^2-y^2+8\left(y-2\right)\)
\(=4x^2-\left(y^2-8y+16\right)\)
\(=4x^2-\left(y-4\right)^2\)
\(=\left(2x+y-4\right)\left(2x-y+4\right)\)
\(A=x^4-6x^3+27x^2-54x+32\)
\(=x^4-5x^3+22x^2-32x-x^3+5x^2-22x+32\)
\(=x\left(x^3-5x^2+22x-32\right)-\left(x^3-5x^2+22x-32\right)\)
\(=\left(x-1\right)\left(x^3-5x^2+22x-32\right)\)
\(=\left(x-1\right)\left(x^3-3x^2+16x-2x^2+6x-32\right)\)
\(=\left(x-1\right)\left[x\left(x^2-3x+16\right)-2\left(x^2-3x+16\right)\right]\)
\(=\left(x-1\right)\left(x-2\right)\left(x^2-3x+16\right)\)
Vì \(x\in Z\)=> x-1;x-2 là 2 số nguyên liên tiếp => \(\left(x-1\right)\left(x-2\right)⋮2\)
\(\Rightarrow A=\left(x-1\right)\left(x-2\right)\left(x^2-3x+16\right)⋮2\) hay A là số chẵn (đpcm)
\(A=x^4-6x^3+27x^2-54x+32\)
\(=x^4-x^3-5x^3+5x^2+22x^2-22x-32x+32\)
\(=\left(x-1\right)\left(x^3-5x^2+22x-32\right)\)
\(=\left(x-1\right)\left[x^2\left(x-2\right)-3x\left(x-2\right)+16\left(x-2\right)\right]\)
\(=\left(x-1\right)\left(x-2\right)\left(x^2-3x+16\right)\)
Vì \(\left(x-1\right)\left(x-2\right)⋮2\) nên A là số chẵn với mọi x thuộc Z