phân tích đa thức thành nhân tử
\(\left(x+y\right)^3-\left(x-y\right)^3\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(x+y-z=a;x-y+z=b;y+z-x=c\)
Ta có:\(A=\left(a+b+c\right)^3-a^3-b^3-c^3\)
\(A=\left[\left(a+b\right)+c\right]^3-a^3-b^3-c^3\)
\(A=\left(a+b\right)^3+3\left(a+b\right)\cdot c\cdot\left(a+b+c\right)+c^3-a^3-b^3-c^3\)
\(A=a^3+b^3+3ab\left(a+b\right)+3\left(a+b\right)c\left(a+b+c\right)+c^3-a^3-b^3-c^3\)
\(A=3\left(a+b\right)\left(ab+ac+bc+c^2\right)\)
\(A=3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
Hay \(A=3\cdot2x\cdot2y\cdot2z\)
\(A=24xyz\)
a, \(x^3-2x-y^3+2y\) (sửa đề)
\(=\left(x^3-y^3\right)-\left(2x-2y\right)\)
\(=\left(x-y\right)\left(x^2+xy+y^2\right)-2\left(x-y\right)\)
\(=\left(x-y\right)\left(x^2+xy+y^2-2\right)\)
b, \(\left(x-y\right)\left(x+y\right)-4zx+4yz\)
\(=\left(x-y\right)\left(x+y\right)-\left(4zx-4yz\right)\)
\(=\left(x-y\right)\left(x+y\right)-4z\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y-4z\right)\)
Bạn xem lại đề câu a giúp mình nha!
\(\left(x+y\right)^3-\left(x-y\right)^3\)
\(=\left[\left(x+y\right)-\left(x-y\right)\right]\left[\left(x+y\right)^2+\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\right]\)
\(=\left(x+y-x+y\right)\left(x^2+2xy+y^2+x^2-y^2+x^2-2xy+y^2\right)\)
\(=2y\left(3x^2+y^2\right)\)
=.= hok tốt!!