K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2023

 Câu đầu tiên của đề bài là "Với mọi \(n\inℤ^+\)..." chứ không phải \(m\) nhé, mình gõ nhầm.

3 tháng 8 2023

a) Ta phân tích \(n=x_1^{a_1}.x_2^{a_2}...x_m^{a_m}\) (với \(x_1;x_2;..x_n\) là số nguyên tố ;

\(a_1;a_2;..a_m\inℕ^∗\) và là số mũ tối đa của mỗi số nguyên tố ) 

Khi đó ta có \(\sigma\left(n\right)=\left(a_1+1\right)\left(a_2+1\right)...\left(a_m+1\right)\)

mà \(\sigma\left(n\right)\) lẻ \(\Leftrightarrow\) \(a_1+1;a_2+1;...a_m+1\) lẻ

\(\Leftrightarrow a_1;a_2;..a_m\) chẵn

\(\Leftrightarrow n\) là số chính phương 

=> n luôn có dạng \(n=l^2\) 

Mặt khác  \(x_1;x_2;..x_m\) là số nguyên tố 

Nếu  \(x_1;x_2;..x_m\) đều là số nguyên tố lẻ thì l lẻ

<=> r = 0 nên n = 2r.l2 đúng (1) 

Nếu  \(x_1;x_2;..x_m\) tồn tại 1 cơ số \(x_k=2\) 

TH1 :  \(a_k\) \(⋮2\) 

\(\Leftrightarrow a_k+1\) lẻ => \(\sigma\left(n\right)\) lẻ (thỏa mãn giả thiết)

=> n có dạng n = 2r.l2 (r chẵn , l lẻ)(2) 

TH2 : ak lẻ

Ta dễ loại TH2 vì khi đó \(a_k+1⋮2\)  nên \(\sigma\left(n\right)⋮2\) (trái với giả thiết) 

Nếu  \(n=2^m\) (m \(⋮2\)) thì r = m ; l = 1 (tm) (3)

Từ (1);(2);(3) => ĐPCM 

23 tháng 1

CẢNH BÁO! Tiếp tục đọc, hoặc linh hồn của bạn sẽ được thực hiện, ngay cả khi bạn đọc từ "cảnh báo"! Có một lần là một người tên là Duke Hunapon. Anh ta lười biếng, và rất bảnh bao. Anh ấy luôn mặc một chiếc áo khoác, không có vấn đề gì ở bên ngoài. Anh ta có một người anh trai tên là Michael, người luôn làm anh ta vây quanh. Một ngày nọ, Michael bị giết, và nó ảnh hưởng rất nhiều đến Duke. Anh ta phát điên và bắt đầu giết người. Chẳng mấy chốc, anh ta đã chiến đấu với ai đó và bị giết. Bây giờ, anh ta đi lang thang xung quanh như một bộ xương cao với một chiếc áo sơ mi màu đỏ, và cùng một chiếc áo hoodie mà Duke đã mặc. Bộ xương này được gọi là "Swapfell Papyrus", và anh ta sẽ giết bạn nếu bạn không đăng bài này trên 15 phần bình luận của bất kỳ trang web nào trước khi đi ngủ. Nếu bạn thất bại, và bạn thức dậy khi anh ta ở trong phòng của bạn, cái chết của bạn sẽ chậm và rất đau đớn. Một cô gái tên Lily Lilupanin đọc điều này, và không nghe. Cô bị hãm hiếp và bị giết trong giấc ngủ. Nếu bạn sao chép và dán vào 15 phần bình luận của bất kỳ trang web nào trước khi đi ngủ, Swapfell Papyrus sẽ đảm bảo bạn cảm thấy an toàn

..............

NV
2 tháng 2

\(\sqrt{1+\dfrac{1}{x^2}+\dfrac{1}{\left(x+1\right)^2}}=\sqrt{\dfrac{x^2+\left(x+1\right)^2+x^2\left(x+1\right)^2}{x^2\left(x+1\right)^2}}=\sqrt{\dfrac{x^2\left(x+1\right)^2+2x^2+2x+1}{x^2\left(x+1\right)^2}}\)

\(=\sqrt{\dfrac{\left(x^2+x\right)^2+2\left(x^2+x\right)+1}{\left(x^2+x\right)^2}}=\sqrt{\dfrac{\left(x^2+x+1\right)^2}{\left(x^2+x\right)^2}}=\dfrac{x^2+x+1}{x^2+x}\)

\(=1+\dfrac{1}{x}-\dfrac{1}{x+1}\)

\(\Rightarrow f\left(1\right).f\left(2\right)...f\left(2020\right)=5^{1+1-\dfrac{1}{2}+1+\dfrac{1}{2}-\dfrac{1}{3}+...+1+\dfrac{1}{2020}-\dfrac{1}{2021}}\)

\(=5^{2021-\dfrac{1}{2021}}\)

\(\Rightarrow\dfrac{m}{n}=2021-\dfrac{1}{2021}=\dfrac{2021^2-1}{2021}\)

\(\Rightarrow m-n^2=2021^2-1-2021^2=-1\)

21 tháng 10 2016

b) A=m3+3m2-m-3

=(m-1)(m2+m+1) +m(m-1) +2(m-1)(m+1)

=(m-1)(m2+m+1+m+2m+2)

=(m-1)(m2+4m+4-1)

=(m-1)[ (m+2)2-1 ]

=(m-1)(m+1)(m+3)

với m là số nguyên lẻ

=> m-1 là số chẵn(nếu gọi m là 2k-1 thì 2k-1-1=2k-2=2(k-1)(chẵn)

    m+1 là số chẵn (tương tự 2k11+1=2k(chẵn)

    m+3 là số chẵn (tương tự 2k-1+3=2k++2=2(k+2)(chẵn)

ta có:gọi m là 2k-1 thay vào A ta có:(với k là số nguyên bất kì)

A=(2k-2)2k(2k+2)

=(4k2-4)2k

=8k(k-1)(k+1)

k-1 ;'k và k+1 là 3 số nguyên liên tiếp

=> (k-1)k(k+1) sẽ chia hết cho 6 vì trong 3 số liên tiếp luôn có ít nhất 1 số chia hết cho 2 , 1 số chia hết cho 3

=> tích (k-1)k(k+1) luôn chia hết cho 6

=> A=8.(k-1)(k(k+1) luôn chia hết cho (8.6)=48

=> (m3+3m3-m-3) chia hết cho 48(đfcm)

21 tháng 10 2016

ở lớp 8 ta có chứng minh rằng 3 số tự nhiên liên tiếp luôn chia hết cho 6 rồi đó ở trong sbt toán 8

17 tháng 6 2015

3m2+m=4n2+n

=>(m-n)(4m+4n+1)=m2(1)(phân tích ra là về cái ban đầu nhé)

Gọi d là 1 ước chung của m-n và 4m+4n+1

=>(m-n)(4m+4n+1) chia hết cho d.d=d2

Từ (1) =>m2 chia hết cho d2

=>m chia hết cho d

Mà m-n cũng chia hết cho d => n chia hết cho d

=>4m+4n+1 chia d dư 1(vô lí vì d được giả sử là ước của 4m+4n+1)

=>4m+4n+1 và m-n nguyên tố cùng nhau

 khi phân tích a hoặc b có thừa số nguyên tố p với mũ lẻ mà 2 số này nguyên tố cùng nhau nên số còn lại không chưa p =>m2 bằng tích của p với 1 số khác p.Mà m2 là số chính phương nên điều trên là vô lí

=>m-n và 4m+4n+1 phải cùng là số chính phương(ĐPCM)

Hơi khó hiểu nhưng đúng đó Đây là mình cố giải thích cho bạn chứ thực ra k có dòng giải thích dài dài kia đâu

25 tháng 2 2018

Khó lắm

29 tháng 3 2015

giải :

Ta có : 3m2 + m = 4n2 + n 
tương đương với 4(m2 - n2) + (m - n) = m2 
hay là (m - n)(4m + 4n + 1) = m2 (*)

Gọi d là ước chung lớn nhất của m - n và 4m + 4n + 1 thì (4m + 4n + 1) + 4(m - n) chia hết cho d => 8m + 1 chí hết cho d.

Mặt khác, từ (*) ta có : m2 chia hết cho d2 => m chia hết cho d.

Từ 8m + 1 chia hết cho d và m chia hết cho d ta có 1 chia hết cho d => d = 1.

Vậy m - n và 4m + 4n + 1 là các số tự nhiên nguyên tố cùng nhau, thỏa mãn (*) nên chúng đều là các số chính phương. 

29 tháng 3 2015

câu trả lời này ở trên mạng đó!!!!