K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 10 2018

Cộng 1 vào 2 vế ta có: 
10x2+50y2+42xy+14x−6y+58≤010x2+50y2+42xy+14x−6y+58≤0
↔(x+7)2+(y−3)2+(3x+7y)2≤0↔(x+7)2+(y−3)2+(3x+7y)2≤0
↔x=−7,y=3↔x=−7,y=3
Vậy... 

Bạn tự ghi nha

chúc hok tốt

3 tháng 10 2018

Đặt A=n2+n+6=k2A=n2+n+6=k2 (kk thuộc NN)

4n2+4n+24=4k2→4n2+4n+24=4k2

(2n+1)24k2=23→(2n+1)2−4k2=−23

(2n+14k)(2n+1+4k)=23→(2n+1−4k)(2n+1+4k)=−23

Đến đây là PT ước số.Tự giải tiếp nhé :)

NV
5 tháng 1 2024

Đặt \(n^2-3n=m^2\) với \(m\in N\)

\(\Rightarrow4n^2-12n=4m^2\)

\(\Rightarrow4n^2-12n+9=4m^2+9\)

\(\Rightarrow\left(2n-3\right)^2-\left(2m\right)^2=9\)

\(\Rightarrow\left(2n-3-2m\right)\left(2n-3+2m\right)=9\)

2n-3-2m-9-3-1139
2n-3+2m-1-3-9931
n-10-1434
m20-220-2

Vậy \(n=\left\{0;3;4\right\}\) là các giá trị thỏa mãn

11 tháng 9 2021

a. tìm a là số tự nhiên để 17a+8 là số chính phương

Giả sử \(17a+8=x^2\Rightarrow17a-17+25=x^2\Rightarrow17\left(a-1\right)=x^2-25\Rightarrow17\left(a-1\right)=\left(x-5\right)\left(x+5\right)\)

\(\Rightarrow\left(x-5\right);\left(x+5\right)⋮17\)

\(\Rightarrow x=17n\pm5\Rightarrow a=17n^2\pm10n+1\)

30 tháng 1 2022

hello

đặt 2n + 34 = a^2

34 = a^2-n^2

34=(a-n)(a+n)

a-n thuộc ước của 34 là { 1; 2; 17; 34} và a-n . Ta có bảng sau ( mik ko bt vẽ)

=>     a-n        1        2 

         a+n        34      17

        Mà tổng và hiệu 2 số nguyên cùng tính chẵn lẻ

      Vậy ....

Ta cóS = 14 +24 +34 +···+1004 không là số chính phương.

=>  S= (1004+14).100:2=50 900 ko là SCP

3 tháng 10 2018

Tham khảo ở đây:

https://diendantoanhoc.net/topic/154899-t%C3%ACm-s%E1%BB%91-t%E1%BB%B1-nhi%C3%AAn-n-sao-cho-s%E1%BB%91-a-n2n6-l%C3%A0-s%E1%BB%91-ch%C3%ADnh-ph%C6%B0%C6%A1ng/

Vì A là só chính phương nên đặt A =a2 với \(a\inℕ\), ta cần tìm n , a tự nhiên thỏa mãn 

\(n^2+n+6=a^2\)

\(\Rightarrow4n^2+4n+24=4a^2\)

\(\Rightarrow\left(4n^2+4n+1\right)+23=4a^2\)

\(\Rightarrow\left(2n+1\right)^2+23=4a^2\)

\(\Rightarrow\left(2a\right)^2-\left(2n+1\right)^2=23\)

\(\Rightarrow\left(2a-2n-1\right)\left(2a+2n+1\right)=23\)

Theo (1) ta  thấy : \(\hept{\begin{cases}2a-2n-1=1\\2a+2n+1=23\end{cases}}\)( Vì 2a +2n +1>2a-2n-1 và 2a+2n+1>0)

Từ đó ta tìm được a=6a=6n=5n=5.

Vậy n=5 là giá trị cần tìm 

12 tháng 9 2023

Do \(n^2+2n+6\) là số chính phương nên đặt: \(n^2+2n+6=a^2\) 

\(\Rightarrow n^2+2n+1+5=a^2\) 

\(\Rightarrow\left(n^2+2n+1\right)+5=a^2\)

\(\Rightarrow\left(n+1\right)^2+5=a^2\)

\(\Rightarrow a^2-\left(n+1\right)^2=5\)

\(\Rightarrow\left(a+n+1\right)\left(a-n-1\right)=5\)

\(\Rightarrow\left(a+n+1\right)\left(a-n-1\right)=5\cdot1\)

Ta có: \(a+n+1>a-n-1\)

\(\Rightarrow\left\{{}\begin{matrix}a+n+1=5\\a-n-1=1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a+n=4\\a-n=2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a=\left(4+2\right):2\\n=\left(4-2\right):2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a=3\\n=1\end{matrix}\right.\)

Vậy: \(n^2+2n+6\) là số chính phương khi \(n=1\)

12 tháng 9 2023

Giúp mình vs