K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2 2021

Trong 4h hai vòi chảy được: 4/12=1/3 ( bể)

Trong 2h vòi thứ 2 chảy được: 2/5-1/3=1/15(bể)

Vòi thứ 2 chảy 1 mình đầy bể hết: 2:1/15=30(h)

Một h vòi thứ nhất chảy được: 1/12-1/30=1/20(bể)

Vòi thứ nhất chảy 1 mình đầy bể hết: 1:1/20=20(h)

Gọi thời gian vòi thứ nhất chảy một mình đầy bể là x(giờ)(Điều kiện: x>4)

Gọi thời gian vòi thứ hai chảy một mình đẩy bể là y(giờ)(Điều kiện: y>4)

Trong 1 giờ, vòi 1 chảy được: \(\dfrac{1}{x}\)(bể)

Trong 1 giờ, vòi 2 chảy được: \(\dfrac{1}{y}\)(bể)

Trong 1 giờ, 2 vòi chảy được: \(\dfrac{1}{4}\)(bể)

Do đó, ta có phương trình: \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{4}\)(1)

Theo đề, ta có phương trình: \(\dfrac{9}{x}+\dfrac{1}{y}=1\)(2)

Từ (1) và (2) ta có hệ phương trình:

\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{4}\\\dfrac{9}{x}+\dfrac{1}{y}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{-8}{x}=\dfrac{-3}{4}\\\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{32}{3}\\\dfrac{1}{y}=\dfrac{1}{4}-\dfrac{3}{32}=\dfrac{5}{32}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{32}{3}\\y=\dfrac{32}{5}\end{matrix}\right.\)(thỏa ĐK)

Vậy: Vòi 1 cần \(\dfrac{32}{3}h\) để chảy một mình đầy bể

Vòi 2 cần \(\dfrac{32}{5}h\) để chảy một mình đầy bể

18 tháng 5 2021

 Gọi thời gian mà vòi thứ nhất và vòi thứu hai chảy một mình đẩy bể lần lượt là x, y (giờ)

Vì hai vòi cùng chảy vào một cái bể không có nước thì trong 12 giờ thì sữ đầy bể nên:

12x+12y=112x+12y=1

Mặt khác, Nếu chỉ mở vòi thứ nhất trong 4h rồi mở vòi thứ 2 chảy trong 6h thì chỉ được hai phần năm bể nên ta có:

4x+6y=254x+6y=25

Suy ra, ta có hệ phương trình:

{12x+12y=14x+6y=25⇔{x=20x=30{12x+12y=14x+6y=25⇔{x=20x=30

Vậy, thời gian mà vòi thứ nhất và vòi thứ hai chảy một mình đẩy bể lần lượt là 20 giờ, 30 giờ

  
15 tháng 1 2017

3 giờ nữa

15 tháng 1 2017

ghi lời giải giúp mình nha