Vẽ 4 điểm : A ; B ; C ; D trên 1 đường thẳng sao cho điểm B nằm giữa 2 điểm : A ; C và điểm C nằm giữa điểm : B ; D. Sau đó hãy kể tên : các tia, các cặp đối nhau, các cặp tia phân biệt, các cặp tia trùng nhau có trong hình vẽ đó.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
dùng thước vạch 1 đường thẳng . chấm 4 điểm A,B,C,D trên đường thẳng đó.
b: Các tia gốc B là Bm,BD
Trục đối xứng của hình chữ nhật ABCD là MN,EF
Tâm đối xứng của hình chữ nhật ABCD là O
TH1 : ( không có 3 điểm nào thẳng hàng)
Số đoạn thẳng là : 4 . ( 4 -1 ) / 2 = 4.3/2 = 6
TH2 : ( bốn điểm thẳng hàng )
, , , ,
Số đoạn thẳng là :
4 . ( 4 - 1) / 2 = 6 (đoạn thẳng)
* Chỉ có đường thẳng mới thay đổi khi có từ 3 điểm thẳng hàng thôi còn đoạn thẳng thì không thay đổi nhé.
Để vẽ được các đường thẳng như yêu cầu, chúng ta có thể sử dụng nguyên tắc "mỗi đường thẳng đi qua 2 trong 4 điểm trên".
a. Để vẽ 6 đường thẳng, ta có thể chọn 2 điểm từ 4 điểm trên và vẽ đường thẳng đi qua chúng. Vì có 4 điểm, ta có C(4,2) = 6 cách chọn 2 điểm từ 4 điểm trên. Vậy, ta có thể vẽ được 6 đường thẳng.
b. Tương tự, để vẽ 4 đường thẳng, ta có C(4,2) = 6 cách chọn 2 điểm từ 4 điểm trên. Vậy, ta có thể vẽ được 4 đường thẳng.
c. Để vẽ 2 đường thẳng, ta cũng có C(4,2) = 6 cách chọn 2 điểm từ 4 điểm trên. Vậy, ta có thể vẽ được 2 đường thẳng.
Với các yêu cầu trên, chúng ta có thể vẽ được số đường thẳng tương ứng.
a: Xét tứ giác MAOB có
\(\widehat{MAO}+\widehat{MBO}=90^0+90^0=180^0\)
=>MAOB là tứ giác nội tiếp
=>M,A,O,B cùng thuộc một đường tròn
b: Xét (O) có
\(\widehat{IBC}\) là góc tạo bởi tiếp tuyến BI và dây cung BC
\(\widehat{BAC}\) là góc nội tiếp chắn cung BC
Do đó: \(\widehat{IBC}=\widehat{BAC}\)
Xét ΔIBC và ΔIAB có
\(\widehat{IBC}=\widehat{IAB}\)
\(\widehat{BIC}\) chung
Do đó: ΔIBC~ΔIAB
=>\(\dfrac{IB}{IA}=\dfrac{IC}{IB}\)
=>\(IB^2=IA\cdot IC\)
c: Xét (O) có
\(\widehat{MBC}\) là góc tạo bởi tiếp tuyến BM và dây cung BC
\(\widehat{CDB}\) là góc nội tiếp chắn cung BC
Do đó: \(\widehat{MBC}=\widehat{CDB}\)
Xét ΔMBC và ΔMDB có
\(\widehat{MBC}=\widehat{MDB}\)
\(\widehat{BMC}\) chung
Do đó: ΔMBC~ΔMDB
=>\(\dfrac{MB}{MD}=\dfrac{MC}{MB}\)
=>\(MB^2=MD\cdot MC\)
a. Em tự giải
b.
Ta có: IB là tiếp tuyến (O) tại B nên \(\widehat{BAC}=\widehat{CBI}\) (góc nội tiếp và góc tạo bởi tiếp tuyến - dây cung cùng chắn BC)
Xét hai tam giác ABI và BCI có:
\(\left\{{}\begin{matrix}\widehat{BAC}=\widehat{CBI}\left(cmt\right)\\\widehat{BIA}\text{ chung}\end{matrix}\right.\) \(\Rightarrow\Delta ABI\sim\Delta BCI\left(g.g\right)\)
\(\Rightarrow\dfrac{IA}{IB}=\dfrac{IB}{IC}\Rightarrow IB^2=IC.IA\)
c.
Ta có \(\widehat{BDC}\) và \(\widehat{MBC}\) là góc nội tiếp và góc tạo bởi tiếp tuyến sây cung cùng chắn BC
\(\Rightarrow\widehat{BDC}=\widehat{MBC}\)
Xét hai tam giác MBD và MCB có:
\(\left\{{}\begin{matrix}\widehat{BMD}\text{ chung}\\\widehat{BDC}=\widehat{MBC}\left(cmt\right)\end{matrix}\right.\) \(\Rightarrow\Delta MBD\sim\Delta MCB\left(g.g\right)\)
\(\Rightarrow\dfrac{MB}{MC}=\dfrac{MD}{MB}\Rightarrow MB^2=MC.MD\)
Đẳng thức cuối em ghi sai.
Do I là trung điểm MB \(\Rightarrow MB=2IB\Rightarrow MB^2=4IB^2\)
\(\Rightarrow MC.MD=4IC.IA\) (đây mới là đẳng thức đúng)
Mọi người ơi mai mình phải nộp rồi bạn nào giải nhanh đúng mình k cho nha.
Không ai trả lời