Giá trị lớn nhất của biểu thức A=-2x^2+x-5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Ta có: P = |x| + 7 > hoặc = 7
Dấu "=" xảy ra khi và chỉ khi x = 0
Vậy Min P = 7 khi và chỉ khi x = 0
2) Ta có: Q = 9 - |x| < hoặc = 9
Dấu "=" xảy ra khi và chỉ khi x = 0
Vậy Max Q = 9 khi và chỉ khi x = 0
a)Ta có:\(\left|x\right|\ge0\Rightarrow P=\left|x\right|+7\)\(\ge7\)
Đẳng thức xảy ra khi: |x| = 0 => x = 0
Vậy giá trị nhỏ nhất của p là 7 khi x = 0
b) Ta có: \(\left|x\right|\ge0\Rightarrow-\left|x\right|\le0\Rightarrow Q=9-\left|x\right|=9+\left(-\left|x\right|\right)\le9\)
Đẳng thức xảy ra khi: -|x| = 0 => x = 0
Vậy giá trị lớn nhất của Q là 9 khi x = 0
Bg
Ta có: A = \(\frac{2012}{9-x}\) (x \(\inℤ\); x \(\ne\)9) (x = 9 thì mẫu = 0, vô lý)
Để A lớn nhất thì 9 - x nhỏ nhất và 9 - x > 0
=> 9 - x = 1
=> x = 9 - 1
=> x = 8
=> A = \(\frac{2012}{9-x}=\frac{2012}{1}=2012\)
Vậy A đạt GTLN khi A = 2012 với x = 8
a)Vì \(\hept{\begin{cases}\left|x+19\right|\ge0;\forall x,y\\\left|y-5\right|\ge0;\forall x,y\end{cases}\Rightarrow\left|x+19\right|+\left|y-5\right|\ge0;\forall x,y}\)
\(\Rightarrow\left|x+19\right|+\left|y-5\right|+1890\ge1890;\forall x,y\)
Dấu"="xảy ra \(\Leftrightarrow\hept{\begin{cases}\left|x+19\right|=0\\\left|y-5\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-19\\y=5\end{cases}}}\)
Vậy Min A=1890 \(\Leftrightarrow\hept{\begin{cases}x=-19\\y=5\end{cases}}\)
b)Vì \(\hept{\begin{cases}-\left|x-7\right|\le0;\forall x,y\\-\left|y+13\right|\le0;\forall x,y\end{cases}}\)\(\Rightarrow-\left|x-7\right|-\left|y+13\right|\le0;\forall x,y\)
\(\Rightarrow-\left|x-7\right|-\left|y+13\right|+1945\le1945;\forall x,y\)
Dấu"="Xảy ra \(\Leftrightarrow\hept{\begin{cases}\left|x-7\right|=0\\\left|y+13\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=7\\y=-13\end{cases}}\)
Vậy Max \(B=1945\Leftrightarrow\hept{\begin{cases}x=7\\y=-13\end{cases}}\)
Nhỏ nhất:
D có giá trị nhỏ nhất khi: (x + 5)2 = 0 và (2y - 6)2 = 0
(x + 5)2 = 0
(x + 5)2 = 02
=> x + 5 = 0
x = 0 - 5
x = -5
(2y - 6)2 = 0
(2y - 6)2 = 02
=> 2y - 6 = 0
2y = 0 + 6
2y = 6
y = 6 : 2
y = 3
Ta có: D = 0 + 0 + 1 = 1
Lớn nhất:(không có giá trị lớn nhất)
GTNN là -2009 <=> x = 2; y = 3
C không có GTLN vì x và y càng lớn hoặc càng nhỏ thì -|x - 2| và -|y - 3| càng nhỏ
Vì - / x-2/ </0
và - / y -3/ </ 0
=> C = -/ x-2/ - / y -3/ - 2009 </ 0+0-2009 = - 2009
Max C = -2009 khi x -2 =0 => x =2 và y -3 =0 => y =3
\(A=-2x^2+x-5\)
\(A=-2\left(x^2-\frac{1}{2}x+\frac{5}{2}\right)\)
\(A=-2\left(x^2-2\cdot x\cdot\frac{1}{4}+\frac{1}{16}+\frac{39}{16}\right)\)
\(A=-2\left[\left(x-\frac{1}{4}\right)^2+\frac{39}{16}\right]\)
\(A=-2\left(x-\frac{1}{4}\right)^2-\frac{39}{8}\)
Vì \(\left(x-\frac{1}{4}\right)^2\ge0\forall x\)\(\Rightarrow-2\left(x-\frac{1}{4}\right)^2\le0\forall x\)
\(\Rightarrow A=-2\left(x-\frac{1}{4}\right)^2-\frac{39}{8}\le-\frac{39}{8}\forall x\)
\(A=-\frac{39}{8}\)\(\Leftrightarrow-2\left(x-\frac{1}{4}\right)^2=0\)\(\Leftrightarrow x=\frac{1}{4}\)
Vậy Max \(A=-\frac{39}{8}\Leftrightarrow x=\frac{1}{4}\)
\(\text{Vì }-2x^2+x=x\left(1-2x\right)\le0\)
\(\Rightarrow\text{ }A=-2x^2+x-5=x\left(1-2x\right)-5\le-5\)
\(\text{Vậy Amax }=-5,\text{ dấu "=" xảy ra khi và chỉ khi }x\left(1-2x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\1-2x=0\Rightarrow x=\frac{1}{2}\end{cases}}\)