Cho tam giác ABC vuông tại B, kẻ đường trung tuyến BM; gọi D là trung điểm BC, I là trung điểm DC và N là trung điểm AD. Chứng minh tứ giác BNMI là hình thang cân.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.Áp dụng đl pytago:
BC^2 = AB^2 + AC^2
--> BC = 10 ( cm).
b. Xét góc CD vuông góc BD
AB vuoong góc BD
-- > BD vuông góc AC
-- > góc CDM= góc BAD ( so le trong)
Xét tam giác BAM và tam giác DCM có:
góc BMA = góc CMD ( đối đỉnh).
BM = MC ( AM là trung tuyến tam giác ABC).
góc CDM= góc BAD ( cmt)
do đó : tam giác BAM = tam giác DCM (g-c-g).
Sửa đề: Đường trung tuyến AM
a: Xét ΔBEM vuông tại E và ΔCFM vuông tại F có
MB=MC
góc B=góc C
=>ΔBEM=ΔCFM
b: ΔBEM=ΔCFM
=>BE=CF và ME=MF
AE+EB=AB
AF+FC=AC
mà EB=FC và AB=AC
nên AE=AF
mà ME=MF
nên AM là trung trực của EF
c: Xét ΔABC có AE/AB=AF/AC
nên EF//BC
Hình các bạn tự vẽ nhé !
a)VÌ \(\Delta ABC\)cân tại \(A\)có \(BM;CN\)là đường trung tuyến
\(\Rightarrow AN=BN=AM=CM=\frac{1}{2}AB=\frac{1}{2}AC\)
\(\Rightarrow\Delta ANM\)cân ( vì AN=AM )
Vì \(\Delta ANM;\Delta ABC\)cùng cân mà có \(\widehat{A}\)chung nên \(\widehat{ANM}=\widehat{AMN}=\widehat{ABC}=\widehat{ACB}\)(đpcm)
Vì \(\widehat{AMN};\widehat{ACB}\)là hai góc đồng vị mà \(\widehat{AMN}=\widehat{ACB}\)(chứng minh trên) nên MN song song với BC (đpcm)
b) Vì G là giao điểm của BM và CN mà BM và CN là 2 đường trung tuyến nên G là trọng tâm của \(\Delta ABC\)
\(\Rightarrow AG\)là đường trung tuyến của \(\Delta ABC\)từ đỉnh A xuống cạnh BC
VÌ trong tam giác cân , đường trung tuyến xuất phát từ đỉnh đối diện với cạnh đáy đồng thời là đường trung trực ứng với cạnh đáy
nên \(AG⊥BC\)
Theo (a) \(BC\)song song với \(MN\)mà \(AG⊥BC\)nên \(AG⊥MN\)(đpcm)