K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 10 2018

\(A=5+5^2+5^3+...+5^{700}\)

\(\Rightarrow5A=5^2+5^3+5^4+...+5^{701}\)

\(\Rightarrow5A-A=\left(5^2+5^3+5^4+...+5^{701}\right)-\left(5+5^2+5^3+...+5^{700}\right)\)

\(\Rightarrow4A=5^{701}-5\)

\(\Rightarrow A=\frac{5^{701}-5}{4}\)

1 tháng 10 2018

\(5A=5.\left(5+5^2+...+5^{700}\right)\)

\(5A=5^2+5^3+...+5^{701}\)

\(5A-A=\left(5^2+5^3+...+5^{701}\right)-\left(5+5^2+...+5^{700}\right)\)

\(4A=5^{701}-5\)

\(A=\frac{5^{701}-5}{4}\)

5 tháng 2 2022

Answer:

\(A=5-5^2+5^3-5^4+...-5^{98}+5^{99}\)

`=>5A=5^2-5^3+5^4-5^5+...-5^{99}+5^{100}`

`=>5A+A=(5^2+5^3-5^4+...-5^{98}+5^{99})`

`=>6A=5+5^{100}`

`=>A=\frac{5+5^{100}}{6}`

18 tháng 10 2017

a) S = 1 + 5 + 5^2 + ... + 5^20

S = (1 + 5) + (5^2 + 5^3) + ... + (5^18 + 5^19) + 5^20

S = (1 + 5) + 5^2.(1 + 5) + ... + 5^18.(1 + 5) + 5^20

S = 6 + 5^2.6 + ... + 5^18.6 + 5^20

S = 6.(1 + 5^2 + ... + 5^18) + 5^20

Mà 6.(1 + 5^2 + ... + 5^18) chia hết cho 6 mà 5^20 có chữ số tận cùng là 5, là số lẻ nên không chia hết 6.

Vậy S không chia hết cho 6

b) S = 1 + 5 + 5^2 + ... + 5^20

S = (1 + 5 + 5^2) + ... + (5^18 + 5^19 + 5^20)

S = (1 + 5 + 5^2) + ... + 5^18.(1 + 5 + 5^2)

S = 31 + ... + 5^18.31

S = 31.(1 + ... + 5^18) chia hết cho 31 => S chia hết cho 31.

2. a) abab : ab = (100ab + ab) : ab = 100ab : ab + ab : ab = 100 + 1 = 101.

b) abcabc : abc = (1000abc + abc) : abc = 1000abc : abc + abc : abc = 1000 + 1 = 1001.

Ta có : A = 5 + 52 + 53 + ..... + 5100

= (5 + 52 )+ (53 + 54 ) + ..... + (599 + 5100)

= 30 + 52(5 + 52) + .... + 598(5 + 52)

= 30 + 52.30 + .... + 598.30

= 30(1 + 52 + ..... + 598) chia hết cho 30

\(A=5+5^2+5^3+...+5^{98}+5^{99}\)

\(A=5+\left(5^2+5^3\right)+...+\left(5^{96}+9^{97}\right)+\left(9^{98}+9^{99}\right)\)

\(A=5+5\left(5^1+5^2\right)+...+5^{95}\left(5^1+5^2\right)+5^{97}\left(5^1+5^2\right)\)

\(A=5+30\cdot5+30\cdot5^3+...+30\cdot5^{95}+30\cdot5^{97}\)

\(A=5+30\cdot\left(5+5^3+...+5^{95}+5^{97}\right)\)

Vì \(30\cdot\left(5+5^3+...+5^{95}+5^{97}\right)⋮5\)\(5\)không chia hết cho 30

Nên \(5+30\cdot\left(5+5^3+...+5^{95}+5^{97}\right)\)không chia hết cho 30

Vậy A không chia hết cho 30

30 tháng 12 2019

Hướng cách làm:

A có 121 số hạng

mà: \(156=5^0+5^1+5^2+5^3\) cần 4 số hạng.

Như vậy mình chỉ ghép được 120 số hạng của A và còn thừa 1 số hạng và số hạng đó có thể là số dư.

Giải:

\(A=5^2+5^3+5^4+...+5^{121}+5^{122}\)

\(=5^2+\left(5^3+5^4+5^5+5^6\right)+...+\left(5^{119}+5^{120}+5^{121}+5^{122}\right)\)

\(=5^2+5^3\left(5^0+5^1+5^2+5^3\right)+...+5^{119}\left(5^0+5^1+5^2+5^3\right)\)

\(=5^2+5^3.156+...+5^{119}.156\)

\(=25+156\left(5^3+...+5^{119}\right)\)

=> A chia 156 dư 25.

17 tháng 10 2017

a) 

S bằng 1+5+52+53+...+520

S bằng 1+(5+52)+(53+54)+...+(519+520)

S bằng 1+5.(1+5)+53.(1+5)+...+519.(1+5)

S bằng 1+5.6+53.6+...+519.6

S bằng 1+6.(5+53+...+519)

Suy ra S chia cho 6 dư 1.

9 tháng 3 2017

5A = 52 + 5+ 5+...+ 5^100

=> 4A = 5A - A = 5^100 - 5 = 5(5^99-1)

=> A = 5(5^99-1)/4

9 tháng 3 2017

 A = 5 – 5^2 + 5^3 – 5^4 + …- 5^98 + 5^99 =>5A = 5^2 – 5^3 + 5^4 - …+ 5^98 – 5^99 + 5^100

Tính và rút gọn được 6A = 5 + 5^100 

A=(5+5^100):6

Vậy A=(5+5^100):6

a)a+b+c=5x+3+5y+3+5z+2=5.(x+y+z)+8=5.(x+y+z+1)+3 chia 5 dư 3

a-b+c=5x+3-5y-3+5z+2=5.(x-y+z)+2 chia 5 dư 2

a+c-b=a-b+c=>a+c-b chia 5 dư 2

b)tổng 2số và hiệu chia hết cho 5 là

45+50 chia hết cho 5 ;50-45 chia hết cho 5; và 45-50 chia hết cho 5     LƯU Ý 45+50=50+45

........còn nhiều lắm

22 tháng 8 2019

không-biết-vì-học-lớp-10