Cho A = 5+5^2+5^3+...+5^700
tính tổng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) S = 1 + 5 + 5^2 + ... + 5^20
S = (1 + 5) + (5^2 + 5^3) + ... + (5^18 + 5^19) + 5^20
S = (1 + 5) + 5^2.(1 + 5) + ... + 5^18.(1 + 5) + 5^20
S = 6 + 5^2.6 + ... + 5^18.6 + 5^20
S = 6.(1 + 5^2 + ... + 5^18) + 5^20
Mà 6.(1 + 5^2 + ... + 5^18) chia hết cho 6 mà 5^20 có chữ số tận cùng là 5, là số lẻ nên không chia hết 6.
Vậy S không chia hết cho 6
b) S = 1 + 5 + 5^2 + ... + 5^20
S = (1 + 5 + 5^2) + ... + (5^18 + 5^19 + 5^20)
S = (1 + 5 + 5^2) + ... + 5^18.(1 + 5 + 5^2)
S = 31 + ... + 5^18.31
S = 31.(1 + ... + 5^18) chia hết cho 31 => S chia hết cho 31.
2. a) abab : ab = (100ab + ab) : ab = 100ab : ab + ab : ab = 100 + 1 = 101.
b) abcabc : abc = (1000abc + abc) : abc = 1000abc : abc + abc : abc = 1000 + 1 = 1001.
Ta có : A = 5 + 52 + 53 + ..... + 5100
= (5 + 52 )+ (53 + 54 ) + ..... + (599 + 5100)
= 30 + 52(5 + 52) + .... + 598(5 + 52)
= 30 + 52.30 + .... + 598.30
= 30(1 + 52 + ..... + 598) chia hết cho 30
\(A=5+5^2+5^3+...+5^{98}+5^{99}\)
\(A=5+\left(5^2+5^3\right)+...+\left(5^{96}+9^{97}\right)+\left(9^{98}+9^{99}\right)\)
\(A=5+5\left(5^1+5^2\right)+...+5^{95}\left(5^1+5^2\right)+5^{97}\left(5^1+5^2\right)\)
\(A=5+30\cdot5+30\cdot5^3+...+30\cdot5^{95}+30\cdot5^{97}\)
\(A=5+30\cdot\left(5+5^3+...+5^{95}+5^{97}\right)\)
Vì \(30\cdot\left(5+5^3+...+5^{95}+5^{97}\right)⋮5\); \(5\)không chia hết cho 30
Nên \(5+30\cdot\left(5+5^3+...+5^{95}+5^{97}\right)\)không chia hết cho 30
Vậy A không chia hết cho 30
Hướng cách làm:
A có 121 số hạng
mà: \(156=5^0+5^1+5^2+5^3\) cần 4 số hạng.
Như vậy mình chỉ ghép được 120 số hạng của A và còn thừa 1 số hạng và số hạng đó có thể là số dư.
Giải:
\(A=5^2+5^3+5^4+...+5^{121}+5^{122}\)
\(=5^2+\left(5^3+5^4+5^5+5^6\right)+...+\left(5^{119}+5^{120}+5^{121}+5^{122}\right)\)
\(=5^2+5^3\left(5^0+5^1+5^2+5^3\right)+...+5^{119}\left(5^0+5^1+5^2+5^3\right)\)
\(=5^2+5^3.156+...+5^{119}.156\)
\(=25+156\left(5^3+...+5^{119}\right)\)
=> A chia 156 dư 25.
a)
S bằng 1+5+52+53+...+520
S bằng 1+(5+52)+(53+54)+...+(519+520)
S bằng 1+5.(1+5)+53.(1+5)+...+519.(1+5)
S bằng 1+5.6+53.6+...+519.6
S bằng 1+6.(5+53+...+519)
Suy ra S chia cho 6 dư 1.
5A = 52 + 53 + 54 +...+ 5^100
=> 4A = 5A - A = 5^100 - 5 = 5(5^99-1)
=> A = 5(5^99-1)/4
A = 5 – 5^2 + 5^3 – 5^4 + …- 5^98 + 5^99 =>5A = 5^2 – 5^3 + 5^4 - …+ 5^98 – 5^99 + 5^100
Tính và rút gọn được 6A = 5 + 5^100
A=(5+5^100):6
Vậy A=(5+5^100):6
a)a+b+c=5x+3+5y+3+5z+2=5.(x+y+z)+8=5.(x+y+z+1)+3 chia 5 dư 3
a-b+c=5x+3-5y-3+5z+2=5.(x-y+z)+2 chia 5 dư 2
a+c-b=a-b+c=>a+c-b chia 5 dư 2
b)tổng 2số và hiệu chia hết cho 5 là
45+50 chia hết cho 5 ;50-45 chia hết cho 5; và 45-50 chia hết cho 5 LƯU Ý 45+50=50+45
........còn nhiều lắm
\(A=5+5^2+5^3+...+5^{700}\)
\(\Rightarrow5A=5^2+5^3+5^4+...+5^{701}\)
\(\Rightarrow5A-A=\left(5^2+5^3+5^4+...+5^{701}\right)-\left(5+5^2+5^3+...+5^{700}\right)\)
\(\Rightarrow4A=5^{701}-5\)
\(\Rightarrow A=\frac{5^{701}-5}{4}\)
\(5A=5.\left(5+5^2+...+5^{700}\right)\)
\(5A=5^2+5^3+...+5^{701}\)
\(5A-A=\left(5^2+5^3+...+5^{701}\right)-\left(5+5^2+...+5^{700}\right)\)
\(4A=5^{701}-5\)
\(A=\frac{5^{701}-5}{4}\)