với moin n thuộc N,cmr
a)\(2^{2^{6n+2}}+3⋮19\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Ta có:
\(2^3\equiv -1\pmod 9\Rightarrow (2^3)^{2n+1}\equiv (-1)^{2n+1}\equiv -1\equiv 8\pmod 9\)
hay \(2^{6n+3}\equiv 8\pmod 9\)
Đặt \(2^{6n+3}=9k+8\)
Vì $2^{6n+3}$ chẵn nên $9k+8$ chẵn, do đó $k$ chẵn. Đặt $k=2t$
Khi đó: \(2^{2^{6n+3}}+3=2^{9k+8}+3=2^{18t+8}+3\)
Theo định lý Fermat nhỏ:
\(2^{18}\equiv 1\pmod{19}\Rightarrow 2^{18t+8}+3\equiv 2^8+3=259\equiv 12\pmod {19}\)
Vậy \(2^{2^{6n+3}}+3\) chia $19$ dư $12$ chứ không chia hết cho $19$
Lời giải:
$2^3\equiv -1\pmod 9$
$\Rightarrow 2^{6n}\equiv (-1)^{2n}\equiv 1\pmod 9$
$\Rightarrow 2^{6n+2}=2^{6n}.4\equiv 4\pmod 9$
$\Rightarrow 2^{6n+2}=9k+4$ với $k$ tự nhiên.
Vì $2^{6n+2}$ chẵn nên $9k$ chẵn $\Rightarrow k$ chẵn.
Khi đó:
\(2^{2^{6n+2}}+3=2^{9k+4}+3\)
$2^9\equiv -1\pmod {19}$
$\Rightarrow 2^{9k}\equiv (-1)^k\equiv 1\pmod {19}$ (do $k$ chẵn)
$\Rightarrow 2^{9k+4}\equiv 16\pmod {19}$
$\Rightarrow 2^{2^{6n+2}}+3=2^{9k+4}+3\equiv 16+3\equiv 19\equiv 0\pmod {19}$
Vậy $2^{2^{6n+2}}+3\vdots 19$
k có dâu hiệu chia hết cho 35 , bạn ns mình dâu hiệu mình làm cho
Ta có:3^6.n2^6.n=n.(3^6-2^6)=n.665
Vì 3^6.n-2^6.n chia hết cho 35 và 665 chia hết cho 35 nên n chia hết cho 35
Vậy n chia hết cho 35 ------->đpcm