\(\frac{x}{-2}=\frac{-y}{4}=\frac{z}{5}\)và \(x-2y+3z=1200\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{-2}=\frac{-y}{4}=\frac{z}{5}=\frac{x-2y+3z}{-2-2.4+3.5}\)
\(=\frac{1200}{5}=240\)
\(\frac{x}{-2}=240\Rightarrow x=-2.240=-480\)
\(\frac{-y}{4}=240\Rightarrow-y=240.4=960\)
\(\frac{z}{5}=240\Rightarrow z=240.5=1200\)
\(\frac{x}{-2}=-\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{x}{-2}=\frac{y}{-4}=\frac{z}{5}\)
\(\Rightarrow\frac{x}{-2}=\frac{2y}{-8}=\frac{3z}{15}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{-2}=\frac{2y}{-8}=\frac{3z}{15}=\frac{x-2y+3z}{-2-\left(-8\right)+15}=\frac{1200}{21}=\frac{400}{7}\)
\(\frac{x}{-2}=\frac{400}{7}\Rightarrow x=-\frac{800}{7}\)
\(\frac{y}{-4}=\frac{400}{7}\Rightarrow y=-\frac{1600}{7}\)
\(\frac{z}{5}=\frac{400}{7}\Rightarrow z=\frac{2000}{7}\)
\(\frac{x}{-2}=\frac{-y}{4}=\frac{z}{5}\Rightarrow\frac{x}{-2}=\frac{-2y}{-8}=\frac{3z}{15}\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{x}{-2}=\frac{-2y}{-8}=\frac{3z}{15}=\frac{x-2y+3z}{-2-8+15}=\frac{1200}{5}=240\)
\(\Rightarrow x=240\cdot\left(-2\right)=-480\)
\(-2y=240\cdot\left(-8\right)=-1920\Rightarrow y=-1920:\left(-2\right)=960\)
\(3z=240\cdot15=3600\Rightarrow z=3600:3=1200\)
Vậy x=-480 ; y= 960; z= 1200
áp dụng tích chất dãy tỉ số bằng nhau
\(\frac{x}{-2}=\frac{-y}{4}=\frac{z}{5}=\frac{2y}{8}=\frac{3z}{15}=\frac{x-2y+3z}{-2-8+15}=\frac{1200}{5}=240\)
vậy:
x/-2=240 =>x=240.(-2)=-480
-y/4=240 =>y=240.4=960
z/5=240 =>z=240.5=1200
a./ \(\frac{x}{5}=\frac{y}{4}=\frac{z}{7}=\frac{2y}{8}=\frac{x+2y+z}{5+8+7}=\frac{10}{20}=\frac{1}{2}\)
\(\Rightarrow x=\frac{5}{2};y=2;z=\frac{7}{2}\)
b./ \(\frac{x}{4}=\frac{y}{5}=\frac{z}{2}=\frac{x+y}{9}=\frac{18}{9}=2\)
\(\Rightarrow x=2\cdot4=8;y=2\cdot5=10;z=2\cdot2=4\)
a) Ta có : \(\frac{x-1}{2}=\frac{y+3}{4}\Leftrightarrow\left(x-1\right).4=\left(y+3\right).2\Leftrightarrow4x-4=2y+6\Leftrightarrow4x-2y=10\Leftrightarrow x=\frac{10+2y}{4}\left(1\right)\)
\(\frac{y+3}{4}=\frac{z-5}{6}\Leftrightarrow\left(y+3\right).6=\left(z-5\right).4\Leftrightarrow6y+18=4z-20\Leftrightarrow6y-4z=-38\Rightarrow z=\frac{6y+38}{4}\left(2\right)\)Thay (1) và (2) vào biểu thức \(5x-3y-4z=20\); ta được :
\(\frac{5.\left(10+2y\right)}{4}-3y-\frac{4.\left(6y+38\right)}{4}=20\)
\(\Leftrightarrow50+10y-12y-24y-152=80\)
\(\Leftrightarrow-26y=182\Rightarrow y=-7\)
Với \(y=-7\Rightarrow x=\frac{10+2.-7}{4}=-1;z=\frac{6.-7+38}{4}=-1\)
Vậy ....
a) Ta có: x/2 = y/3 => x/8 = y/12 (1)
y/4 = z/5 => y/12 = z/15 (2)
Từ (1) và (2) => x/8 = y/12 = z/15
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
x/8 = y/12 = z/15 = x + y - z / 8 + 12 - 15 = 10/5 = 2
x/8 = 2 => x = 2 . 8 = 16
y/12 = 2 => y = 2 . 12 = 24
z/15 = 2 => z = 2 . 15 = 30
Vậy x = 16; y = 24 và z = 30
b) Ta có: x/2 = y/3 => x/10 = y/15 (1)
y : 5 = z : 4 => y/5 = z/4 => y/15 = z/12 (2)
Từ (1) và (2) => x/10 = y/15 = z/12
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
x/10 = y/15 = z/12 = x - y + z / 10 - 15 + 12 = -49/7 = -7
x/10 = -7 => x = -7 . 10 = -70
y/15 = -7 => y = -7 . 15 = -105
z/12 = -7 => z = -7 . 12 = -84
Vậy x = -70; y = -105 và z = -84
c) Áp dụng tính chất dãy tỉ số bằng nhau ta có:
x/2 = y/3 = z/4 = 2y/6 = 3z/12 = x + 2y - 3z / 2 + 6 - 12 = -20/-4 = 5
x/2 = 5 => x = 5 . 2 = 10
y/3 = 5 => y = 5 . 3 = 15
z/4 = 5 => z = 5 . 4 = 20
Vậy x = 10; y = 15 và z = 20.