cho A= 1+ 3+ 3 mũ 2+.......+ 3 mũ 9. Chứng minh 2A + 1 viết được dạng lũy lừa có cơ số là 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=1+3+3^2+...+3^{41}\)
\(3A=3+3^2+3^3+...+3^{42}\)
\(3A-A=3+3^2+...+3^{42}-1-3-...-3^{41}\)
\(2A=3^{42}-1\)
\(A=\dfrac{3^{42}-1}{2}\)
Ta có: \(2A+1\)
\(=2\cdot\dfrac{3^{42}-1}{2}+1\)
\(=3^{42}-1+1\)
\(=3^{42}\)
\(=\left(3^2\right)^{21}\)
\(=9^{21}\)
\(A=3+3^2+3^3+...+3^{1010}\\ \Rightarrow3A=3^2+3^3+3^4+...+3^{1011}\\ \Rightarrow3A-A=3^{1011}-3\\ \Rightarrow2A+3=3^{1011}=27^{337}\left(đfcm\right)\)
a.
\(a^2\),\(4^3,8^2\)
B
\(a^3\),\(9^2,254^1\)
C
\(a^2\)và \(a^3\),\(54^2,36^3,48^4\)
Bài 1:
a,\(A=3+3^2+3^3+...+3^{2010}\)
\(=\left(3+3^2+3^3+3^4\right)+....+\left(3^{2007}+3^{2008}+3^{2009}+3^{2010}\right)\)
\(=3\left(1+3+3^2+3^3\right)+....+3^{2007}\left(1+3+3^2+3^3\right)\)
\(=3.40+...+3^{2007}.40\)
\(=40\left(3+3^5+...+3^{2007}\right)⋮40\)
Vì A chia hết cho 40 nên chữ số tận cùng của A là 0
b,\(A=3+3^2+3^3+...+3^{2010}\)
\(3A=3^2+3^3+...+3^{2011}\)
\(3A-A=\left(3^2+3^3+...+3^{2011}\right)-\left(3+3^2+3^3+...+3^{2010}\right)\)
\(2A=3^{2011}-3\)
\(2A+3=3^{2011}\)
Vậy 2A+3 là 1 lũy thừa của 3