K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 9 2021

\(A=3+3^2+3^3+...+3^{1010}\\ \Rightarrow3A=3^2+3^3+3^4+...+3^{1011}\\ \Rightarrow3A-A=3^{1011}-3\\ \Rightarrow2A+3=3^{1011}=27^{337}\left(đfcm\right)\)

3 tháng 9 2021

Phần mở ngoặc là gì vậy bạn

11 tháng 10 2016

42.83 = (22)2.(23)3 = 24.29 = 213

93.272 = (32)3.(33)2 = 36.36 = 312

82.253 = (23)2.(52)3 = 26.56 = (2.5)6 = 106

11 tháng 10 2016

a ) 42 . 83 = ( 22 ) 2 . ( 23 ) 3 = 22.2 . 23.3 = 24 . 29 = 24+9 = 213

b ) 93 . 272 = ( 32 ) 3 . ( 33 ) 2 = 32.3 . 33.2 = 36 . 36 = 36+6 = 312

14 tháng 9 2020

A = 3 + 32 + 33 + ... + 3100

⇔ 3A = 3( 3 + 32 + 33 + ... + 3100 )

⇔ 3A = 32 + 33 + ... + 3101

⇔ 2A = 3A - A

          = 32 + 33 + ... + 3101 - ( 3 + 32 + 33 + ... + 3100 )

          = 32 + 33 + ... + 3101 - 3 - 32 - 33 - ... - 3100

          = 3101 - 3

2A + 3 = 3x+100

⇔ 3101 - 3 + 3 = 3x+100

⇔ 3101 = 3x+100

⇔ 101 = x + 100

⇔ x = 1

Vậy x = 1

14 tháng 9 2020

                                                        Bài giải

\(A=3+3^2+3^3+...+3^{100}\)

\(3A=3^2+3^3+3^4+...+3^{101}\)

\(3A-A=2A=3^{101}-3\)

Ta có : \(2A+3=3^{x+100}\)

\(3^{101}-3+3=3^{x+100}\)

\(3^{101}=3^{x+100}\)

\(\Rightarrow\text{ }x+100=101\)

\(\Rightarrow\text{ }x=1\)

28 tháng 6 2018

B = 31 + 32 + 33 + ... + 328 + 329 + 330

B = (  31 + 32 + 33 ) + ... + ( 328 + 329 + 330 )

B = 31 . ( 1 + 3 + 32 ) + ... + 328 . ( 1 + 3 + 32 )

B = 31 . 13 + ... + 328 . 13

B = 13 . ( 3 + ... + 328 ) \(⋮\)13

Vậy B \(⋮\)13 ( dpcm )

28 tháng 6 2018

\(B=3^1+3^2+3^3+3^4+3^5+............+3^{30}\)

\(\Rightarrow B=\left(3^1+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+............+\left(3^{28}+3^{29}+3^{30}\right)\)

\(\Rightarrow B=3^1.\left(1+3+3^2\right)+3^4.\left(1+3+3^2\right)+.........+3^{28}.\left(1+3+3^2\right)\)

\(\Rightarrow B=3^1.13+3^4.13+.........+3^{28}.13\)

\(\Rightarrow B=13\left(3^1+3^4+.........+3^{28}\right)\)

Mà 13 \(⋮\)13 \(\Rightarrow13\left(3^1+3^4+...........+3^{28}\right)⋮13\)

Vậy B chia hết cho 13

6 tháng 1 2021

Trời trời, mình làm cho bạn câu khi nãy bạn phải biết vận dụng cho mấy bài sau chứ, câu này giống i lột câu khi nãy luôn ấy, nhưng thôi, khá rảnh nên:vv

+Ta có: \(B=3+3^2+3^3+3^4+...+3^{2010}\)

-> \(B=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{2009}\left(1+3\right)\)

-> \(B=3.4+3^3.4+...+3^{2009}.4\)

-> \(B=4\left(3+3^3+...+3^{2009}\right)⋮4\)

-> Đpcm 

+ Ta có: \(B=3+3^2+3^3+3^4+....+3^{2010}\)

-> \(B=3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+...+3^{2008}\left(1+3+3^2\right)\)

-> \(B=3.13+3^4.13+...+.3^{2008}.13\)

-> \(B=13\left(3+3^4+...+3^{2008}\right)⋮13\)

-> Đpcm

Ta có: \(B=3^1+3^2+3^3+3^4+...+3^{2010}\)

\(=3^1\cdot\left(1+3\right)+3^3\cdot\left(1+3\right)+...+3^{2009}\cdot\left(1+3\right)\)

\(=\left(1+3\right)\cdot\left(3^1+3^3+...+3^{2009}\right)\)

\(=4\cdot\left(3+3^3+...+3^{2009}\right)⋮4\)(đpcm)

Ta có: \(B=3^1+3^2+3^3+3^4+...+3^{2010}\)

\(=3\left(1+3+3^2\right)+3^4\cdot\left(1+3+3^2\right)+...+3^{2008}\cdot\left(1+3+3^2\right)\)

\(=\left(1+3+3^2\right)\cdot\left(3+3^4+...+3^{2008}\right)\)

\(=13\cdot\left(3+3^4+...+3^{2008}\right)⋮13\)(đpcm)

6 tháng 1 2021

Úi gời cơi cộng chấm chấm chấm :)))

+ Ta có: \(A=2+2^2+2^3+2^4+...+2^{2010}\)

\(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2009}\left(1+2\right)\)

\(A=2.3+2^3.3+...+2^{2009}.3\)

\(A=3\left(2+2^3+...+2^{2010}\right)⋮3\)

-> Đpcm

+ Ta có: \(A=2+2^2+2^3+2^4+...+2^{2010}\)

\(A=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+....+2^{2008}\left(1+2+2^2\right)\)

\(A=2.7+2^4.7+...+2^{2008}.7\)

\(A=7\left(2+2^4+...+2^{2008}\right)⋮7\)

-> Đpcm

24 tháng 12 2023

\(A=2^1+2^2+...+2^{2010}\)

\(=\left(2^1+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2009}+2^{2010}\right)\)

\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2009}\left(1+2\right)\)

\(=3\left(2+2^3+...+2^{2009}\right)⋮3\)

\(A=2+2^2+2^3+...+2^{2010}\)

\(=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\)

\(=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2008}\left(1+2+2^2\right)\)

\(=7\left(2+2^4+...+2^{2008}\right)⋮7\)

24 tháng 12 2023

A=2\(^1\)+2\(^2\)+...+2\(^{2010}\)

=(2\(^1\)+2\(^2\))+(2\(^3\)+2\(^4\))+...+(2\(^{2009}\)+2\(^{2010}\))

=2(1+2)+2\(^3\)(1+2)+...+2\(^{2009}\)(1+2)

=3(2+2\(^3\)+...+2\(^{2009}\))⋮3

26 tháng 12 2021

lớp mấy vậy anh

e có cj học lớp 11