Với giá trị nào của các chữ thì các biểu thức sau có giá trị là số 0, số dương, số âm.
a, P= \(\frac{a^2b}{c}\)
b, Q=\(\frac{x^3}{yz}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
) ( )
hoặc
hoặc và
Mà với mọi và
cùng dấu
hoặc
Mà với mọi và
khác dấu
thì và thì
b) ( )
Nếu cùng dấu
Nếu khác dấu
Nếu cùng dấu
Nếu khác dấu
Bạn tham khảo ở link này :
https://olm.vn/hoi-dap/detail/214647966991.html
a) \(P=\frac{a^2b}{c}\)
P = 0 khi \(a^2b=0\)
\(\Rightarrow\hept{\begin{cases}a^2=0\\b=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a=0\\b=0\end{cases}}\)(hai trường hợp)
P âm khi
\(\hept{\begin{cases}a^2b< 0\\c< 0\end{cases}}\)
Mà \(a^2\ge0\forall a\)
\(\Rightarrow P< 0khi\hept{\begin{cases}b< 0\\c< 0\end{cases}}\)(hai trường hợp)
P > 0 khi \(a>0;b>0;c>0\)
CÂU b) LÀM TƯƠNG TỰ NHA BẠN HOK TOT
\(C=\frac{2\left(x-1\right)^2+1}{\left(x-1\right)^2+2}\)
a, Ta thấy \(\left(x-1\right)^2\ge0\forall x\Rightarrow\hept{\begin{cases}2\left(x-1\right)^2+1\ge1>0\\\left(x-1\right)^2+2\ge2>0\end{cases}}\)
\(\Rightarrow C>0\forall x\)(đpcm)
b, \(C=\frac{2\left(x-1\right)^2+1}{\left(x-1\right)^2+2}=\frac{2\left(x-1\right)^2+4-3}{\left(x-1\right)^2+2}=2-\frac{3}{\left(x-1\right)^2+2}\)
\(C\in Z\Leftrightarrow2-\frac{3}{\left(x-1\right)^2+2}\in Z\)
\(\Leftrightarrow\frac{3}{\left(x-1\right)^2+2}\in Z\)Lại do \(\left(x-1\right)^2+2\ge2\)
\(\Leftrightarrow\left(x-1\right)^2+2\inƯ\left(3\right)=\left\{3\right\}\)
\(\Leftrightarrow\left(x-1\right)^2\in\left\{1\right\}\)
\(\Leftrightarrow x\in\left\{0\right\}\)
....
c, \(C=2-\frac{3}{\left(x-1\right)^2+2}\)
Ta có : \(\left(x-1\right)^2+2\ge2\Rightarrow\frac{3}{\left(x-1\right)^2+2}\le\frac{3}{2}\)
\(\Rightarrow C=2-\frac{3}{\left(x-1\right)^2+2}\ge2-\frac{3}{2}=\frac{1}{2}\)
Dấu "=" xảy ra khi \(x-1=0\Leftrightarrow x=1\)
:33
1) a) Để x > 0
=> \(2a-5< 0\)
\(\Rightarrow2a< 5\)
\(\Rightarrow a< 2,5\)
\(\text{Vậy }x>0\Leftrightarrow a< 2,5\)
b) Để x < 0
\(\Rightarrow2a-5>0\)
\(\Rightarrow2a>5\)
\(\Rightarrow a>2,5\)
\(\text{Vậy }x< 0\Leftrightarrow a>2,5\)
c) Để x = 0
\(\Rightarrow2a-5=0\)
\(\Rightarrow2a=5\)
\(\Rightarrow a=2,5\)
\(\text{Vậy }x=0\Leftrightarrow a=2,5\)
2) \(\text{Vì }a\inℤ\Rightarrow3a-5\inℤ\)
\(\text{mà }x\inℤ\Leftrightarrow3a-5⋮4\)
\(\Rightarrow3a-5\in B\left(4\right)\)
\(\Rightarrow3a-5\in\left\{0;4;8;...\right\}\)
\(\Rightarrow3a\in\left\{5;9;13;....\right\}\)
\(\Rightarrow a\in\left\{\frac{5}{3};3;\frac{13}{3};6;....\right\}\)
\(\text{Mà }a\inℤ\Rightarrow a\in\left\{3;6;9;...\right\}\text{thì }x\inℤ\)
a) \(P=\frac{a^2b}{c}=0\)( \(c\ne0\))
\(\Rightarrow a^2\cdot b=0\)
\(\Rightarrow a^2=0\)hoặc \(b=0\)
\(\Rightarrow a=0\)hoặc \(b=0\)và \(c\ne0\)
\(P=\frac{a^2b}{c}>0\)
Mà \(a^2\ge0\)với mọi \(a\)và \(c\ne0\)
\(\Rightarrow b;c\)cùng dấu
\(\Rightarrow b;c>0\)hoặc \(b;c< 0\)
\(P=\frac{a^2b}{c}< 0\)
Mà \(a^2\ge0\)với mọi \(a\)và \(c\ne0\)
\(\Rightarrow b;c\)khác dấu
\(\Rightarrow b< 0\)thì \(c>0\)và \(b>0\)thì \(c< 0\)
b) \(Q=\frac{x^3}{yz}=0\)( \(y;z\ne0\))
\(\Rightarrow x=0\)
\(Q=\frac{x^3}{yz}< 0\)\(\left(y;z\ne0\right)\)
Nếu \(y;z\)cùng dấu \(\Rightarrow x< 0\)
Nếu \(y;z\)khác dấu \(\Rightarrow x>0\)
\(Q=\frac{x^3}{yz}>0\left(y;z\ne0\right)\)
Nếu \(y;z\)cùng dấu \(\Rightarrow x>0\)
Nếu \(y;z\)khác dấu \(\Rightarrow x< 0\)