K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2017

Bài 1: Áp dụng BĐT AM-GM ta có:

\(1+x\ge2\sqrt{x}\)

\(x+y\ge2\sqrt{xy}\)

\(y+1\ge2\sqrt{y}\)

Cộng theo vế 3 BĐT trên ta có:

\(2\left(1+x+y\right)\ge2\left(\sqrt{x}+\sqrt{xy}+\sqrt{y}\right)\)

\(1+x+y\ge\sqrt{x}+\sqrt{xy}+\sqrt{y}\Leftrightarrow VT\ge VP\) 

Đẳng thức xảy ra khi  \(\hept{\begin{cases}1+x=2\sqrt{x}\\x+y=2\sqrt{xy}\\y+1=2\sqrt{y}\end{cases}}\Rightarrow x=y=1\)

Khi đó \(S=x^{2013}+y^{2013}=1^{2013}+1^{2013}=2\)

Bài 2: Vì \(\hept{\begin{cases}x,y,z\in\left[-1;3\right]\\x+y+z=3\end{cases}}\) nên 

\(0\le\left(x+1\right)\left(y+1\right)\left(z+1\right)+\left(3-x\right)\left(3-y\right)\left(3-z\right)\)

\(\Leftrightarrow0\le4\left(xy+yz+xz\right)-8\left(x+y+z\right)+28\)

\(\Leftrightarrow0\le2\left(xy+yz+xz\right)+2\)

\(\Leftrightarrow x^2+y^2+z^2\le x^2+y^2+z^2+2\left(xy+yz+xz\right)+2\)

\(\Leftrightarrow x^2+y^2+z^2\le\left(x+y+z\right)^2+2\)

\(\Leftrightarrow x^2+y^2+z^2\le3^2+2=9+2=11\)

8 tháng 4 2017

Cảm ơn b Thắng Nguyễn

19 tháng 3 2020

\(\text{Σ}\frac{x^2}{\sqrt[3]{x^3+8}}=\text{Σ}\frac{x^2}{\sqrt[3]{\left(x+2\right)\left(x^2-2x+4\right)}}\ge\text{Σ}\frac{x^2}{\frac{x+2+x^2-2x+4}{2}}=\text{2}\left(Σ\frac{x^2}{x^2-x+6}\right)\)
Áp dụng BDT Cauchy-Schwarz:
\(VT\ge2\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2-x-y-z+18}\)
Áp dụng BDT: \(9=3\left(xy+yz+xz\right)\le\left(x+y+z\right)^2\Rightarrow x+y+z\ge3\)

\(\Rightarrow VT\ge2\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2-3+18}=2\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2+15}=2\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2+3\left(xy+yz+xz\right)}\)
\(\ge2\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)^2}=1\)

Dấu = xảy ra khi x=y=z=1
 

NV
1 tháng 5 2021

\(S=sinx+siny+sin\left(3x+y\right)-sin\left(3x+y\right)-sin\left(x+y\right)\)

\(=sinx+siny-sin\left(x+y\right)\)

\(S^2=\left(sinx+siny-sin\left(x+y\right)\right)^2\le3\left(sin^2x+sin^2y+sin^2\left(x+y\right)\right)\)

\(S^2\le3\left(1-\dfrac{1}{2}\left(cos2x+cos2y\right)+sin^2\left(x+y\right)\right)\)

\(S^2\le3\left[1-cos\left(x+y\right)cos\left(x-y\right)+1-cos^2\left(x-y\right)\right]\)

\(S^2\le3\left[2+\dfrac{1}{4}cos^2\left(x+y\right)-\left[cos\left(x-y\right)-\dfrac{1}{2}cos\left(x+y\right)\right]^2\right]\le3\left[2+\dfrac{1}{4}cos^2\left(x+y\right)\right]\)

\(S^2\le3\left(2+\dfrac{1}{4}\right)=\dfrac{27}{4}\)

\(\Rightarrow S\le\dfrac{3\sqrt{3}}{2}\)

\(\Rightarrow\left\{{}\begin{matrix}a=3\\b=3\\c=2\end{matrix}\right.\)

3 tháng 6 2021

Gt\(\Leftrightarrow\left(x+\sqrt{x^2+2}\right)\left(x-\sqrt{x^2+2}\right)\left(y-1+\sqrt{y^2-2y+3}\right)=2\left(x-\sqrt{x^2+2}\right)\)

\(\Leftrightarrow-2\left(y-1+\sqrt{y^2-2y+3}\right)=2\left(x-\sqrt{x^2+2}\right)\)

\(\Leftrightarrow x-\sqrt{x^2+2}+y-1+\sqrt{y^2-2y+3}=0\) (*)

\(\left(x+\sqrt{x^2+2}\right)\left(y-1+\sqrt{y^2-2y+3}\right)=2\)

\(\Leftrightarrow\left(x+\sqrt{x^2+2}\right)\left(y-1+\sqrt{y^2-2y+3}\right)\left(y-1-\sqrt{y^2-2y+3}\right)=2\left(y-1-\sqrt{y^2-2y+3}\right)\)

\(\Leftrightarrow\left(x+\sqrt{x^2+2}\right).-2=2\left(y-1-\sqrt{y^2+2y+3}\right)\)

\(\Leftrightarrow y-1-\sqrt{y^2+2y+3}+x+\sqrt{x^2+2}=0\) (2*)

Cộng vế với vế của (*) và (2*) => \(2x+2y-2=0\)

\(\Leftrightarrow x+y=1\)

\(\Leftrightarrow x^3+y^3+3xy\left(x+y\right)=1\)

\(\Leftrightarrow x^3+y^3+3xy=1\)

3 tháng 6 2021

Ta có:`(x+sqrt{x^2+2})(sqrt{x^2+2}-x)=2`

`<=>sqrt{x^2+2}-x=y-1+sqrt{y^2-2y+3}`

`<=>sqrt{x^2+2}-sqrt{y^2-2y+3}=x+y-1(1)`

CMTT:`sqrt{y^2-2y+3}-(y-1)=x+sqrt{x^2+2}`

`<=>sqrt{y^2-2y+3}-y+1=x+sqrt{x^2+2}`

`<=>sqrt{y^2-2y+3}-sqrt{x^2+2}=x+y-1(2)`

Cộng từng vế (1)(2) ta có:

`2(x+y-1)=0`

`<=>x+y-1=0`

`<=>x+y=1`

`<=>(x+y)^3=1`

`<=>x^3+y^3+3xy(x+y)=1`

`<=>x^3+y^3+3xy=1`(do `x+y=1`)

24 tháng 6 2018

Câu 1:

\(\sqrt{x-a}+\sqrt{y-b}+\sqrt{z-c}=\dfrac{1}{2}\left(x+y+z\right)\\ \Leftrightarrow2\sqrt{x-a}+2\sqrt{y-b}+2\sqrt{z-c}=x+y+z\\ \Leftrightarrow x+y+z-2\sqrt{x-a}-2\sqrt{y-b}-2\sqrt{z-c}=0\\ \Leftrightarrow x+y+z-2\sqrt{x-a}-2\sqrt{y-b}-2\sqrt{z-c}+3-a-b-c=0\\ \Leftrightarrow\left[\left(x-a\right)-2\sqrt{x-a}+1\right]+\left[\left(y-b\right)-2\sqrt{y-b}+1\right]+\left[\left(z-c\right)-2\sqrt{z-c}+1\right]=0\\ \Leftrightarrow\left(\sqrt{x-a}-1\right)^2+\left(\sqrt{y-b}-1\right)^2+\left(\sqrt{z-c}-1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-a}-1=0\\\sqrt{y-b}-1=0\\\sqrt{z-c}-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-a}=1\\\sqrt{y-b}=1\\\sqrt{z-c}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-a=1\\y-b=1\\z-c=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=a+1\\y=b+1\\z=c+1\end{matrix}\right.\)Vậy \(\left\{x;y;z\right\}=\left\{a+1;b+1;c+1\right\}\)

24 tháng 6 2018

Câu 2:

\(\text{ a) Ta có }:\dfrac{1}{\sqrt{n}}=\dfrac{2}{\sqrt{n}+\sqrt{n}}< \dfrac{2}{\sqrt{n-1}+\sqrt{n}}=\dfrac{2\left(\sqrt{n}-\sqrt{n-1}\right)}{\left(\sqrt{n-1}+\sqrt{n}\right)\left(\sqrt{n}-\sqrt{n-1}\right)}\\ =\dfrac{2\left(\sqrt{n}-\sqrt{n-1}\right)}{n-n+1}=2\left(\sqrt{n}-\sqrt{n-1}\right)\left(1\right)\)

\(\text{Lại có: }\dfrac{1}{\sqrt{n}}=\dfrac{2}{\sqrt{n}+\sqrt{n}}>\dfrac{2}{\sqrt{n+1}+\sqrt{n}}=\dfrac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{\left(\sqrt{n+1}+\sqrt{n}\right)\left(\sqrt{n+1}-\sqrt{n}\right)}\\ =\dfrac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{n+1-n}=2\left(\sqrt{n+1}-\sqrt{n}\right)\left(2\right)\)

Từ \(\left(1\right)\)\(\left(2\right)\Rightarrow2\left(\sqrt{n+1}-n\right)< \dfrac{1}{\sqrt{n}}< 2\left(\sqrt{n}-\sqrt{n-1}\right)\)

b) Áp dụng bất đảng thức ở câu a:

\(\Rightarrow S=1+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{100}}\\ >2\left(\sqrt{101}-\sqrt{100}\right)+...+\left(\sqrt{4}-\sqrt{3}\right)+\left(\sqrt{3}-\sqrt{2}\right)+\left(\sqrt{2}-\sqrt{1}\right)\\ =2\left(\sqrt{101}-\sqrt{100}+...+\sqrt{4}-\sqrt{3}+\sqrt{3}-\sqrt{2}+\sqrt{2}-\sqrt{1}\right)\\ =2\left(\sqrt{101}-\sqrt{1}\right)>2\left(\sqrt{100}-1\right)=2\left(10-1\right)=18\left(3\right)\)

\(\Rightarrow S=1+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{100}}< 2\left(\sqrt{100}-\sqrt{99}\right)+...+\left(\sqrt{3}-\sqrt{2}\right)+\left(\sqrt{2}-\sqrt{1}\right)+\left(\sqrt{1}-\sqrt{0}\right)\\ =2\left(\sqrt{100}-\sqrt{99}+...+\sqrt{3}-\sqrt{2}+\sqrt{2}-\sqrt{1}+\sqrt{1}\right)\\ =2\cdot\sqrt{100}=2\cdot10=20\left(4\right)\)

Từ \(\left(3\right)\)\(\left(4\right)\Rightarrow18< S< 20\)

16 tháng 2 2023

Từ GT ta lấy tích phân 2 vế cận từ 0 đến 1 ; sẽ được : 

\(\int\limits^1_0f\left(x+1\right)dx+\int\limits^1_03f\left(3x+2\right)dx-\int\limits^1_04f\left(4x+1\right)dx-\int\limits^1_0f\left(2^x\right)dx=\int\limits^1_0\dfrac{3dx}{\sqrt{x+1}+\sqrt{x+2}}\left(1\right)\)

\(\int\limits^1_0\dfrac{3dx}{\sqrt{x+1}+\sqrt{x+2}}=\int\limits^1_03\left(\sqrt{x+2}-\sqrt{x+1}\right)dx\)  = 

\(2\left[\left(x+2\right)\sqrt{x+2}-\left(x+1\right)\sqrt{x+1}\right]\dfrac{1}{0}\)  = \(2+6\sqrt{3}-8\sqrt{2}\left(2\right)\)

Dễ thấy : \(\int\limits^1_0f\left(x+1\right)dx=\int\limits^2_1f\left(t\right)dt=\int\limits^2_1f\left(x\right)dx\)

\(\int\limits^1_03f\left(3x+2\right)dx=\int\limits^5_2f\left(t\right)dt=\int\limits^5_2f\left(x\right)dx\)  (3)

\(\int\limits^1_04f\left(4x+1\right)=\int\limits^5_1f\left(t\right)dt=\int\limits^5_1f\left(x\right)dx\left(4\right)\)

\(\int\limits^1_0f\left(2^x\right)dx=\int\limits^2_1\dfrac{f\left(t\right)dt}{tln2}=\dfrac{1}{ln2}.\int\limits^2_1\dfrac{f\left(t\right)dt}{t}=\dfrac{1}{ln2}.\int\limits^2_1\dfrac{f\left(x\right)dx}{x}\)  (5)

Thay (2) ; (3) ; (4) ; (5) vào (1) ta được : 

\(\int\limits^2_1f\left(x\right)dx+\int\limits^5_2f\left(x\right)dx-\int\limits^5_1f\left(x\right)dx-\dfrac{1}{ln2}.\int\limits^2_1\dfrac{f\left(x\right)dx}{x}=2+6\sqrt{3}-8\sqrt{2}\)

\(\Leftrightarrow\int\limits^2_1\dfrac{f\left(x\right)dx}{x}=\left(2+6\sqrt{3}-8\sqrt{2}\right)ln2\)

23 tháng 7 2023

a) \(\left\{{}\begin{matrix}a=x\\b=2y\\c=3z\end{matrix}\right.\Rightarrow a+b+c=2;a,b,c>0\)

\(\Rightarrow S=\sqrt{\dfrac{\dfrac{ab}{2}}{\dfrac{ab}{2}+c}}+\sqrt{\dfrac{\dfrac{bc}{2}}{\dfrac{bc}{2}+a}}+\sqrt{\dfrac{ca}{ca+2b}}\)

\(=\sqrt{\dfrac{ab}{ab+2c}}+\sqrt{\dfrac{bc}{bc+2a}}+\sqrt{\dfrac{ca}{ca+2b}}\)

Vì a,b,c>0 nên áp dụng BĐT AM-GM, ta có: 

 \(\sqrt{\dfrac{ab}{ab+2c}}=\sqrt{\dfrac{ab}{ab+\left(a+b+c\right)c}}=\sqrt{\dfrac{ab}{c^2+bc+ca+ab}}=\sqrt{\dfrac{ab}{\left(a+c\right)\left(b+c\right)}}\)

\(=\sqrt{\dfrac{a}{a+c}}.\sqrt{\dfrac{b}{b+c}}\le\dfrac{1}{2}\left(\dfrac{a}{a+c}+\dfrac{b}{b+c}\right)\) 

\(\sqrt{\dfrac{bc}{bc+2a}}=\sqrt{\dfrac{bc}{\left(b+a\right)\left(c+a\right)}}\le\dfrac{1}{2}\left(\dfrac{b}{a+b}+\dfrac{c}{a+c}\right)\)

\(\sqrt{\dfrac{ca}{ca+2b}}=\sqrt{\dfrac{ca}{\left(c+b\right)\left(a+b\right)}}\le\dfrac{1}{2}\left(\dfrac{c}{b+c}+\dfrac{a}{a+b}\right)\)

\(\Rightarrow S\le\dfrac{1}{2}\left(\dfrac{a}{a+b}+\dfrac{b}{a+b}\right)+\dfrac{1}{2}\left(\dfrac{b}{b+c}+\dfrac{c}{b+c}\right)+\dfrac{1}{2}\left(\dfrac{a}{a+c}+\dfrac{c}{a+c}\right)=\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}=\dfrac{3}{2}\)

Dấu "=" xảy ra khi và chỉ khi: a=b=c=2/3=>\(\left(x,y,z\right)=\left\{\dfrac{2}{3};\dfrac{1}{3};\dfrac{2}{9}\right\}\)

1: \(P=\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}+1}{2}=\dfrac{\sqrt{x}+1}{2\sqrt{x}}\)

2: Để P là số nguyên thì \(2\sqrt{x}+2⋮2\sqrt{x}\)

\(\Leftrightarrow2\sqrt{x}=2\)

hay x=1(nhận)

3: \(P-\dfrac{1}{2}=\dfrac{\sqrt{x}+1}{2\sqrt{x}}-\dfrac{1}{2}=\dfrac{2\sqrt{x}+2-\sqrt{x}}{2\sqrt{x}}=\dfrac{\sqrt{x}+2}{2\sqrt{x}}>0\)

=>P>1/2