-1 - \(\dfrac{1}{2}\)- \(\dfrac{1}{4}\)-.....- \(\dfrac{1}{1024}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm x: \(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{8}-\dfrac{1}{16} +...-\dfrac{1}{1024}=\dfrac{x}{1024}\)
\(\dfrac{x}{1024}=\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{8}-\dfrac{1}{16}+...-\dfrac{1}{1024}\)
\(\dfrac{2x}{1024}=1-\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{8}+...-\dfrac{1}{512}\)
\(\Rightarrow\dfrac{x}{1024}+\dfrac{2x}{1024}=1-\dfrac{1}{1024}\)
\(\Rightarrow\dfrac{3x}{1024}=\dfrac{1023}{1024}\)
\(\Rightarrow3x=1023\)
\(\Rightarrow x=341\)
Lời giải:
$\frac{x}{1024}=\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+...-\frac{1}{1024}$
$\frac{2x}{1024}=1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+...-\frac{512}$
$\Rightarrow \frac{x}{1024}+\frac{2x}{1024}=1-\frac{1}{1024}$
$\frac{3x}{1024}=\frac{1023}{1024}$
$\Rightarrow 3x=1023$
$\Rightarrow x=341$
\(A=\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+...+\dfrac{1}{512}+\dfrac{1}{1024}\)
\(=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{10}}\)
\(\Rightarrow2A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^9}\)
\(\Rightarrow2A-A=A=1-\dfrac{1}{2^{10}}\)
Đặt A=1/2+1/4+1/8+..+1/1024
Ax2=1+1/2+1/4+1/8+..+1/512( Nhân cả 2 vế với 2)
Ax2-A=(1+1/2+1/4+1/8+..+1/512)-(1/2+1/4+1/8+..+1/1024)
<=>A=1-1/1024
<=>A=1023/1024
Vậy biểu thức đã cho = 1023/1024
\(\dfrac{\left(\dfrac{1}{2}\right)^{10}\cdot5-\left(\dfrac{1}{4}\right)^5\cdot3}{\dfrac{1}{1024}\cdot\dfrac{1}{3}-\left(\dfrac{1}{2}\right)^{11}}\)
\(=\dfrac{\left(\dfrac{1}{2}\right)^{10}\cdot2}{\left(\dfrac{1}{2}\right)^{10}\cdot\left(\dfrac{1}{3}-\dfrac{1}{2}\right)}\)
\(=2:\dfrac{-1}{6}=2\cdot\left(-6\right)=-12\)
\(2S=1+\dfrac{1}{2}+...+\dfrac{1}{512}\)
\(S=2S-S=1-\dfrac{1}{1024}=\dfrac{1023}{1024}\)
`S = 1/2 + 1/4 + ....+1/1024`
`=> 1/2S = 1/4 + 1/8 + .....+1/2048`
`=> 1/2S = 1-1/2S = ( 1/4 + 1/8 + .... + 1/2048 )-(1/2+1/4+.....+1/1024)`
`=> 1/2S = 1 - 1/2048`
`=> 1/2S = 2047/2048`
`=> S = 2047/1024`
Nhân 2 vế ta được:
2S=1+1/2 + 1/4 + ... + 1/512
S=2S−S=1 - 1/1024 =1023/1024
Vậy: S= 1023/1024
Đặt \(B=1+\dfrac{1}{2}+...+\dfrac{1}{1024}\) và \(A=-1-\dfrac{1}{2}-\dfrac{1}{4}-...-\dfrac{1}{1024}\)
=>A=-B
\(B=1+\dfrac{1}{2}+...+\dfrac{1}{1024}\)
=>\(\dfrac{1}{2}B=\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2^{11}}\)
=>\(-\dfrac{1}{2}B=\dfrac{1}{2^{11}}-1\)
=>\(\dfrac{1}{2}B=1-\dfrac{1}{2^{11}}=\dfrac{2^{11}-1}{2^{11}}\)
=>\(B=\dfrac{2^{11}-1}{2^{10}}\)
=>\(A=\dfrac{1-2^{11}}{2^{10}}\)