tìm x:
5x . 52 = 32 + 42
(x - 2)3 = 27
2018x-9= 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, X = 273
b, X = 156
c, X = 4
d, X = 505
e, X = \(\frac{37}{245}\)
1: =>\(5^{x-2}-9=2^4-\left(6^2-6^2\right)\)
=>\(5^{x-2}=16+9=25\)
=>x-2=2
=>x=4
2: \(\Leftrightarrow3^x+16=19^6:19^5-3=19-3=16\)
=>3^x=0
=>x=0
3: \(\Leftrightarrow2^x+2^x\cdot16=272\)
=>2^x*17=272
=>2^x=16
=>x=4
4: \(\Leftrightarrow2^{x-1}+3=24-\left(4^2-2^2+1\right)=24-\left(16-4+1\right)\)
=>\(2^{x-1}+3=24-16+4-1=8+4-1=12-1=11\)
=>2^x-1=8
=>x-1=3
=>x=4
Phương pháp giải:
Muốn tìm một số hạng ta lấy tổng trừ đi số hạng kia.
Lời giải chi tiết:
a) x + 16 = 32
x = 32 − 16
x = 16
b) x + 27 = 52
x = 52 − 27
x = 25
c) 36 + x = 42
x = 42 − 36
x = 6
a) Ta có : 2 x : 2 2 = 2 5 nên x = 7.
b) Ta có: 3 x : 3 2 = 3 5 nên x = 7.
c) Ta có : 4 4 : 4 x = 4 2 nên x = 2.
d) Ta có : 5 x : 5 2 = 5 2 nên x = 4,
e) Ta có: 5 x + 1 : 5 = 5 4 nên x = 4.
f) Ta có : 4 2 x - 1 : 4 = 4 2 nên x = 2
a) x(x - 5) - 4x + 20 = 0
\(\Leftrightarrow\) x(x - 5) - (4x + 20)
\(\Leftrightarrow\) x(x - 5) - 4(x - 5) = 0
\(\Leftrightarrow\) (x - 5)(x - 4)
Khi x - 5 = 0 hoặc x - 4 = 0
\(\Leftrightarrow\) x = 5 \(\Leftrightarrow\) x = 4
Vậy S = \(\left\{5;4\right\}\)
b) x(x + 6) - 7x - 42 = 0
\(\Leftrightarrow\) x(x + 6) - (7x - 42) = 0
\(\Leftrightarrow\) x(x + 6) - 7(x + 6) = 0
\(\Leftrightarrow\) (x + 6)(x - 7) = 0
Khi x - 6 = 0 hoặc x - 7 = 0
\(\Leftrightarrow\) x = 6 \(\Leftrightarrow\) x = 7
Vậy S = \(\left\{6;7\right\}\)
c) x3 - 5x2 - x + 5 = 0
\(\Leftrightarrow\) (x3 - 5x2) - (x + 5) = 0
\(\Leftrightarrow\) x2 (x - 5) - (x - 5) = 0
\(\Leftrightarrow\) (x - 5)(x2 - 1) = 0
\(\Leftrightarrow\) (x - 5)(x - 1)(x + 1) = 0
Khi x - 5 = 0 hoặc x - 1 = 0 hoặc x + 1 = 0
\(\Leftrightarrow\) x = 5 \(\Leftrightarrow\) x = 1 \(\Leftrightarrow\) x = -1
Vậy S = \(\left\{5;1;-1\right\}\)
d) 4x2 - 25 - (2x - 5)(3x + 7) = 0
\(\Leftrightarrow\) (2x)2 - 52 - (2x - 5)(3x + 7) = 0
\(\Leftrightarrow\) (2x - 5)(2x + 5) - (2x - 5)(3x + 7) = 0
\(\Leftrightarrow\) (2x - 5) \([\left(2x+5\right)-\left(3x+7\right)]\) = 0
\(\Leftrightarrow\) (2x - 5) ( 2x + 5 - 3x + 7) = 0
\(\Leftrightarrow\) (2x - 5)( -x + 12) = 0
Khi 2x - 5 = 0 hoặc -x + 12 = 0
\(\Leftrightarrow\) 2x = 5 \(\Leftrightarrow\) -x = -12
\(\Leftrightarrow\) x = \(\dfrac{5}{2}\) \(\Leftrightarrow\) x = 12
Vậy S = \(\left\{\dfrac{5}{2};12\right\}\)
e) x3 + 27 + (x + 3)(x - 9) = 0
\(\Leftrightarrow\) x3 - 33 + (x + 3)(x - 9) = 0
\(\Leftrightarrow\) (x - 3)(x2 - 3x + 9) + (x + 3)(x - 9) = 0
\(\Leftrightarrow\) (x - 3) \(\left[\left(x^2-3x+9\right)+\left(x-9\right)\right]\) = 0
\(\Leftrightarrow\) (x - 3) ( x2 - 3x + 9 + x - 9) = 0
\(\Leftrightarrow\) (x - 3)(x2 - 2x) = 0
\(\Leftrightarrow\) (x - 3)x(x - 2)
Khi x - 3 = 0 hoặc x = 0 hoặc x - 2 = 0
\(\Leftrightarrow\) x = 3 \(\Leftrightarrow\) x = 2
Vậy S = \(\left\{3;0;2\right\}\)
Chúc bạn học tốt
a) Ta có: \(x\left(x-5\right)-4x+20=0\)
\(\Leftrightarrow\left(x-5\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=4\end{matrix}\right.\)
b) Ta có: \(x\left(x+6\right)-7x-42=0\)
\(\Leftrightarrow x\left(x+6\right)-7\left(x+6\right)=0\)
\(\Leftrightarrow\left(x+6\right)\left(x-7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-6\\x=7\end{matrix}\right.\)
1: =>\(5^{2x-3}=5^2\cdot3+5^2\cdot2=5^2\cdot5=5^3\)
=>2x-3=3
=>2x=6
=>x=3
2: \(41-2^{x+1}=9\)
=>\(2^{x+1}=32\)
=>x+1=5
=>x=4
3: =>\(4^{x+2}=65-1=64\)
=>x+2=3
=>x=1
\(5^{2x-3}-2.5^2=5^2.3\\ 5^{2x-3}=5^2.3+5^2.2\\ 5^{2x-3}=5^2.\left(3+2\right)\\ 5^{2x-3}=5^2.5\\ 5^{2x-3}=5^3\\ \Rightarrow2x-3=3\\ 2x=3+3\\ 2x=6\\ x=\dfrac{6}{2}\\ Vậy:x=3\)
d) Ta có: \(32\%-0.25:x=-\dfrac{17}{5}\)
\(\Leftrightarrow0.25:x=\dfrac{8}{25}+\dfrac{17}{5}=\dfrac{93}{25}\)
hay \(x=\dfrac{25}{372}\)
Vậy: \(x=\dfrac{25}{372}\)
e) Ta có: \(\left(x+\dfrac{1}{5}\right)^2+\dfrac{17}{25}=\dfrac{26}{25}\)
\(\Leftrightarrow\left(x+\dfrac{1}{5}\right)^2=\dfrac{9}{25}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{5}=\dfrac{3}{5}\\x+\dfrac{1}{5}=-\dfrac{3}{5}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{5}\\x=-\dfrac{4}{5}\end{matrix}\right.\)
Vậy: \(x\in\left\{\dfrac{2}{5};-\dfrac{4}{5}\right\}\)
f) Ta có: \(-\dfrac{32}{27}-\left(3x-\dfrac{7}{9}\right)^3=-\dfrac{24}{27}\)
\(\Leftrightarrow\left(3x-\dfrac{7}{9}\right)^3=\dfrac{-8}{27}\)
\(\Leftrightarrow3x-\dfrac{7}{9}=-\dfrac{2}{3}\)
\(\Leftrightarrow3x=\dfrac{1}{9}\)
hay \(x=\dfrac{1}{27}\)
g) Ta có: \(60\%\cdot x+0.4x+x:3=2\)
\(\Leftrightarrow\dfrac{4}{3}x=2\)
hay \(x=\dfrac{3}{2}\)
Vậy: \(x=\dfrac{3}{2}\)
h) PT \(\Leftrightarrow\left|\dfrac{20}{9}-x\right|=\dfrac{2}{9}\) \(\Rightarrow\left[{}\begin{matrix}\dfrac{20}{9}-x=\dfrac{2}{9}\\x-\dfrac{20}{9}=\dfrac{2}{9}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{22}{9}\end{matrix}\right.\)
Vậy ...
i) PT \(\Leftrightarrow\dfrac{8}{5}+\dfrac{2}{5}x=\dfrac{16}{5}\) \(\Leftrightarrow\dfrac{2}{5}x=\dfrac{8}{5}\) \(\Leftrightarrow x=4\)
Vậy ...
a) \(5^x.5^2=3^2+4^2\Leftrightarrow5^x.5^2=25\)
\(\Leftrightarrow5^x=\frac{25}{5^2}=1=5^0\Rightarrow x=0\)
b) \(\left(x-2\right)^3=27\Leftrightarrow\left(x-2\right)^3=3^3\)
\(\Leftrightarrow x-2=3\Leftrightarrow x=5\)
c) \(2018^{x-9}=1\). Ta có: \(2018^0=1\) nên để \(2018^{x-9}=1\) thì \(x-9=0\Leftrightarrow x=9\)