Tìm n thuộc N
( 2n - 15 )5 = ( 2n - 15 )3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: =>n-4 thuộc Ư(15)
mà n thuộc N
nên n-4 thuộc {-3;-1;1;3;5;15}
=>n thuộc {1;3;5;7;9;19}
b: =>2n-4+9 chia hết cho n-2
=>n-2 thuộc {1;-1;3;-3;9;-9}
mà n>=0
nên n thuộc {3;1;5;11}
d) Để \(\dfrac{n+1}{2n+1}\in Z\) thì \(n+1⋮2n+1\)
\(\Leftrightarrow1⋮2n+1\)
\(\Leftrightarrow2n+1\in\left\{1;-1\right\}\)
\(\Leftrightarrow2n\in\left\{0;-2\right\}\)
hay \(n\in\left\{0;-1\right\}\)
Mk trả lời mỗi câu khó nha!!!
d*) \(\dfrac{n+1}{2n+1}\in Z\)
Để \(\dfrac{n+1}{2n+1}\in Z\) thì \(n+1⋮2n+1\)
\(n+1⋮2n+1\)
\(\Rightarrow2.\left(n+1\right)⋮2n+1\)
\(\Rightarrow2n+2⋮2n+1\)
\(\Rightarrow2n+1+1⋮2n+1\)
\(\Rightarrow1⋮2n+1\)
\(\Rightarrow2n+1\inƯ\left(1\right)=\left\{\pm1\right\}\)
Ta có bảng giá trị:
2n+1 | -1 | 1 |
n | -1 | 0 |
Vậy \(n\in\left\{-1;0\right\}\)
\(a,3n-1\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
3n-1 | 1 | -1 | 2 | -2 | 3 | -3 | 4 | -4 | 6 | -6 | 12 | -12 |
n | loại | 0 | 1 | loại | loại | loại | loại | -1 | loại | loại | loại | loại |
c, \(\dfrac{2\left(n-3\right)+9}{n-3}=2+\dfrac{9}{n-3}\Rightarrow n-3\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\)
n-3 | 1 | -1 | 3 | -3 | 9 | -9 |
n | 4 | 2 | 6 | 0 | 12 | -6 |
\(\frac{2n+15}{n+3}\)=\(\frac{2n+6+9}{n+3}\)=\(\frac{2.\left(n+3\right)+9}{n+3}\)=\(\frac{2.\left(n+3\right)}{n+3}\)+\(\frac{9}{n+3}\)=2+\(\frac{9}{n+3}\)
Có với n\(\in\)N \(\frac{2n+15}{n+3}\)là số tự nhiên<=>2+\(\frac{9}{n+3}\)là số tự nhiên <=> \(\frac{9}{n+3}\)là số tự nhiên (2\(\in\)N)
<=>(n+3)\(\in\)Ư(9)
<=>(n+3)\(\in\){1,3,9}
n+3 | 1 | 3 | 9 |
n | -2(không thỏa mãn n\(\in\)N) | 0 | 6 |
vậy n\(\in\){0,6} thì \(\frac{2n+15}{n+3}\)là số tự nhiên
\(\frac{2n+15}{2n-1}=\frac{2n-1+16}{2n-1}=1+\frac{16}{2n-1}\)
Để phân số trên nguyên \(\Leftrightarrow\frac{16}{2n-1}\) nguyên.
\(\Leftrightarrow2n-1=Ư\left(16\right)=\left\{-16;-8;-4;-2;-1;1;2;4;8;16\right\}\)
Rồi bạn tự tìm n nha !
=> 2n-15 ={-1; 0; 1}
Tự giải tìm n