K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 9 2018

Làm giống như bạn Should A Person

NV
20 tháng 1 2024

Áp dụng t/c dãy tỉ số bằng nhau:

a.

\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{2x}{6}=\dfrac{4y}{20}=\dfrac{2x+4y}{6+20}=\dfrac{28}{26}=\dfrac{14}{13}\)

\(\Rightarrow\left\{{}\begin{matrix}x=3.\dfrac{14}{13}=\dfrac{52}{13}\\y=5.\dfrac{14}{13}=\dfrac{70}{13}\end{matrix}\right.\)

(Em có nhầm đề 26 thành 28 ko nhỉ, số xấu quá)

b.

\(4x=5y\Rightarrow\dfrac{x}{5}=\dfrac{y}{4}=\dfrac{3x}{15}=\dfrac{-2y}{-8}=\dfrac{3x-2y}{15-8}=\dfrac{35}{7}=5\)

\(\Rightarrow\left\{{}\begin{matrix}x=5.5=25\\y=4.2=20\end{matrix}\right.\)

c.

\(\dfrac{x}{-3}=\dfrac{y}{-7}=\dfrac{2x}{-6}=\dfrac{4y}{-28}=\dfrac{2x+4y}{-6-28}=\dfrac{68}{-34}=-2\)

\(\Rightarrow\left\{{}\begin{matrix}x=-3.\left(-2\right)=6\\y=-7.\left(-2\right)=14\end{matrix}\right.\)

d.

\(\dfrac{x}{2}=\dfrac{y}{-3}=\dfrac{z}{4}=\dfrac{4x}{8}=\dfrac{-3y}{9}=\dfrac{-2z}{-8}=\dfrac{4x-3y-2z}{8+9-8}=\dfrac{16}{9}\)

\(\Rightarrow\left\{{}\begin{matrix}x=2.\dfrac{16}{9}=\dfrac{32}{9}\\y=-3.\dfrac{16}{9}=-\dfrac{48}{9}\\z=4.\dfrac{16}{9}=\dfrac{64}{9}\end{matrix}\right.\)

4 tháng 7 2023

(x;y;z)={(6;9;12);(8;12;16)}(x;y;z)={(6;9;12);(8;12;16)}

Giải thích các bước giải:

2z4x3=3x2y4=4y3z23(2z4x)9=4(3x2y)16=2(4y3z)4=6z12x+12x8y+8y6z9+16+4=02z−4x3=3x−2y4=4y−3z2⇒3(2z−4x)9=4(3x−2y)16=2(4y−3z)4=6z−12x+12x−8y+8y−6z9+16+4=0

2z4x=03x2y=04y3z=0y=34z⇒{2z−4x=03x−2y=04y−3z=0⇒y=34z

mà 200<y2+z2<450200<y2+z2<450

200<(34z)2+z2<450200<2516z2<450128<z2<288⇒200<(34z)2+z2<450⇔200<2516z2<450⇔128<z2<288

Vì z là số nguyên dương 128<z<288⇒128<z<288

z{12;13;14;15;16}⇒z∈{12;13;14;15;16}

mà y là số nguyên dương và y=34zy=34z

z{12;16}⇒z∈{12;16}

Thế vào y=34zy=34z và 2z4x=02z-4x=0

+) Với z=12y=34.12=6z=12⇒y=34.12=6

                    2.124x=0x=62.12-4x=0⇒x=6

Với z=16y=34.16=12z=16⇒y=34.16=12

    2.164x=0x=82.16-4x=0⇒x=8

Vậy ta có các cặp nghiệm là: (x;y;z)={(6;9;12);(8;12;16)}

4 tháng 7 2023

(x;y;z)={(6;9;12);(8;12;16)}(x;y;z)={(6;9;12);(8;12;16)}

Giải thích các bước giải:

2z4x3=3x2y4=4y3z23(2z4x)9=4(3x2y)16=2(4y3z)4=6z12x+12x8y+8y6z9+16+4=02z−4x3=3x−2y4=4y−3z2⇒3(2z−4x)9=4(3x−2y)16=2(4y−3z)4=6z−12x+12x−8y+8y−6z9+16+4=0

2z4x=03x2y=04y3z=0y=34z⇒{2z−4x=03x−2y=04y−3z=0⇒y=34z

mà 200<y2+z2<450200<y2+z2<450

200<(34z)2+z2<450200<2516z2<450128<z2<288⇒200<(34z)2+z2<450⇔200<2516z2<450⇔128<z2<288

Vì z là số nguyên dương 128<z<288⇒128<z<288

z{12;13;14;15;16}⇒z∈{12;13;14;15;16}

mà y là số nguyên dương và y=34zy=34z

z{12;16}⇒z∈{12;16}

Thế vào y=34zy=34z và 2z4x=02z-4x=0

+) Với z=12y=34.12=6z=12⇒y=34.12=6

                    2.124x=0x=62.12-4x=0⇒x=6

Với z=16y=34.16=12z=16⇒y=34.16=12

    2.164x=0x=82.16-4x=0⇒x=8

Vậy ta có các cặp nghiệm là: (x;y;z)={(6;9;12);(8;12;16)}

15 tháng 8 2020

\(\frac{x+1}{2}=\frac{y+2}{3}=\frac{z+2}{4}\)   => \(\frac{3x+3}{6}=\frac{2y+4}{6}=\frac{z+2}{4}\)(1)

Áp dụng tính chất dãy tỉ số bằng nhau ta có 

TỪ(1) => \(\frac{3x+3+2y+4+z+2}{6+6+4}=\frac{\left(3x+2y+z\right)+\left(3+4+2\right)}{16}\)

=\(\frac{105+9}{16}=\frac{57}{8}\)

b)tương tự câu a

15 tháng 8 2020

a) Ta có :\(\frac{x+1}{2}=\frac{y+2}{3}=\frac{z+2}{4}\)

=> \(\frac{3x+3}{6}=\frac{2y+4}{6}=\frac{z+2}{4}\)

Lại có 3x - 2y + z = 105

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{3x+3}{6}=\frac{2y+4}{6}=\frac{z+2}{4}=\frac{3x+3-2y-4+z+2}{6-6+4}=\frac{\left(3x-2y+z\right)+3-4+2}{4}\) 

                                                                                                                      \(=\frac{105+1}{4}=\frac{106}{4}=26,5\)

=> x = 52 ; y = 77,5 ; z = 104

b) Ta có : \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\Rightarrow\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{16}\)

Đặt \(\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{16}=k\Rightarrow\hept{\begin{cases}x^2=4k\\y^2=9k\\z^2=16k\end{cases}}\)

Lại có x2 - y2 + 2z2 = 108

=> 4k - 9k + 2.16k = 108

=> -5k + 32k = 108

=> 27k = 108

=> k = 4

=> x = \(\pm\)4 ; y = \(\pm\)6 ; z = \(\pm\)8

Vì \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)=> x ; y ; z cùng dấu

=> các cặp số (x;y;z) thỏa mãn bài toán là (-4;-6;-8) ; (4;6;8)

12 tháng 10 2021

a) Áp dụng t/x dtsbn:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{-5}=\dfrac{3x}{6}=\dfrac{2z}{-10}=\dfrac{3x-2z}{6+10}=\dfrac{48}{16}=3\)

\(\Rightarrow\left\{{}\begin{matrix}x=3.2=6\\y=3.3=9\\z=3.\left(-5\right)=-15\end{matrix}\right.\)

b) \(\dfrac{x}{10}=\dfrac{y}{-13}=\dfrac{z}{17}=\dfrac{2y}{-26}=\dfrac{3z}{51}=\dfrac{2y-3z}{-26-51}=\dfrac{77}{-77}=-1\)

\(\Rightarrow\left\{{}\begin{matrix}x=10.\left(-1\right)=-10\\y=\left(-13\right).\left(-1\right)=13\\z=17.\left(-1\right)=-17\end{matrix}\right.\)

12 tháng 10 2021

a) \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{-5}\Rightarrow\dfrac{3x}{6}=\dfrac{y}{3}=\dfrac{2z}{-10}\)

Áp dụng t/c của DTSBN, ta có: \(\dfrac{3x-2z}{6-\left(-10\right)}=\dfrac{48}{16}=3\)

\(\dfrac{x}{2}=3\Rightarrow x=6\)

\(\dfrac{y}{3}=3\Rightarrow y=9\)

\(\dfrac{z}{-5}=3\Rightarrow z=-15\)

 

6 tháng 9 2021

a) x2+y2-4x+4y+8=0

⇔ (x-2)2+(y+2)2=0

\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-2\end{matrix}\right.\)

b)5x2-4xy+y2=0

⇔ x2+(2x-y)2=0

\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\2x-y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

c)x2+2y2+z2-2xy-2y-4z+5=0

⇔ (x-y)2+(y-1)2+(z-2)2=0

\(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y-1=0\\z-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y=1\\z=2\end{matrix}\right.\)

b: Ta có: \(5x^2-4xy+y^2=0\)

\(\Leftrightarrow x^2-\dfrac{4}{5}xy+y^2=0\)

\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{2}{5}y+\dfrac{4}{25}y^2+\dfrac{21}{25}y^2=0\)

\(\Leftrightarrow\left(x-\dfrac{2}{5}y\right)^2+\dfrac{21}{25}y^2=0\)

Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

30 tháng 12 2015

vào chtt tick nha bạn hiền

13 tháng 8 2023

a) Ta có:

\(x^2-x+1\)

\(=x^2-2\cdot\dfrac{1}{2}\cdot x+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

Mà: \(\left(x-\dfrac{1}{2}\right)^2\ge0\) và \(\dfrac{3}{4}>0\) nên

\(\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)

\(\Rightarrow x^2-x+1>0\forall x\)