K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 1 2019

Ta có 7x2⋮7

1820⋮7

Vậy để phương trình \(7x^2+13y^2=1820\) có nghiệm nguyên thì 13y2⋮7⇔y2⋮7 (vì (13;7)=1) (1)

Ta lại có \(7x^2+13y^2=1820\Leftrightarrow7x^2=1820-13y^2\ge0\Leftrightarrow13y^2\le1820\Leftrightarrow y^2\le140\left(2\right)\)(2)

Ta lại có y2 là số chính phương (3)

Từ (1),(2),(3)\(\Rightarrow y^2=49\Leftrightarrow\)\(y=\pm7\Leftrightarrow x=\pm13\)

Vậy phương trình có 4 nghiệm (x;y)={(7;13);(-7;-13);(-7;13);(7;-13)}

3 tháng 12 2017

Ta có :

1820 = 7 . 13 . 20 nên từ 7x2 + 13y2 = 1820 suy ra x \(⋮\)13 và y \(⋮\)7

đặt x  = 13k ; y = 7t ( k, t \(\in\)N* ) , từ 7x2 + 13y2 = 1820 ta có :

7 . 132 . k2 + 13 . 72 . t2 = 1820

nên : 13k2 + 7t2 = 20

suy ra : k2 = 1 ; t2 = 1 vì k,t \(\in\)N* nên k = t = 1 do đó x = 13 , y = 7 

Vậy ...

3 tháng 12 2017

y = 7 đó

22 tháng 4 2021

Ta có :

1820 = 7 . 13 . 20 nên từ 7x2 + 13y2 = 1820 suy ra x ⋮⋮13 và y ⋮⋮7

đặt x  = 13k ; y = 7t ( k, t ∈∈N* ) , từ 7x2 + 13y2 = 1820 ta có :

7 . 132 . k2 + 13 . 72 . t2 = 1820

nên : 13k2 + 7t2 = 20

suy ra : k2 = 1 ; t2 = 1 vì k,t ∈∈N* nên k = t = 1 do đó x = 13 , y = 7 

Vậy ...

22 tháng 4 2021

Ta có :

  1820 = 7 . 13 . 20 nên từ 7x2 + 13y2 = 1820 suy ra x ⋮ 13 và y ⋮ 7

Đặt x  = 13k ; y = 7t ( k, t ∈ N* ) , từ 7x2 + 13y2 = 1820 ta có :

  7 . 132 . k2 + 13 . 72 . t2 = 1820

nên : 13k2 + 7t2 = 20

suy ra : k2 = 1 ; t2 = 1 vì k,t ∈∈N* nên k = t = 1 do đó x = 13 , y = 7 

Vậy x = 13

       y = 7

Chúc bạn học tốt nhá

20 tháng 10 2018

Gọi d là ước chung lớn nhất của x, y

\(\Rightarrow\left(x,y\right)=d\)

\(\Rightarrow x,y,z,t⋮d\)

\(\Rightarrow x=dx_1;y=dy_1;z=dz_1;t=dt_1;\)

Với \(x_1;y_1;z_1;t_1\in N;\left(x_1;y_1\right)=1\)

\(\Rightarrow14\left(x_1^2+y^2_1\right)=z_1^2+t_1^2⋮7\)

\(\Rightarrow z_1;t_1⋮7\)

\(\Rightarrow x_1^2+y_1^2⋮7\)

\(\Rightarrow x_1;y_1⋮7\)

Trái giả thuyết nên phương trình vô nghiệm nguyên.

18 tháng 10 2018

7x² + 13y² = 1820

<=> 7x² = 1820 - 13y² (*)

Ta có 7x² ≥ 0 với mọi x,nên để pt có nghiệm thì: 1820 - 13y² ≥ 0

<=> 13y² ≤ 1820 <=> y² ≤ 140

<=> -√140 ≤ y ≤ √140 hay -11,8 ≤ y ≤ 11,8

Do y ε Z => y = { -11 ; -10 ; -9 ; ... ; 9 ; 10 ; 11}

▪ y = -11, thay vào (*) ta có : x² = 247/7 --> loại
▪ .... --> loại
▪ y = -7 ,thay vào (*) => x² = 169 <=> x = ±13
▪ .... --> loại
▪ y = 7 ,thay vào (*) => x² = 169 <=> x = ±13
▪ .... --> loại
▪ y = 11, thay vào (*) ta có : x² = 247/7 --> loại

Vậy các nghiệm nguyên của phương trình là :

( x ; y ) = ( 13 ; 7 ) ; ( 13 ; -7 ) ; ( -13 ; 7 ) ; ( -13 ; -7 )

8 tháng 12 2018

Giả sử x;y là các số nguyên thỏa mãn phương trình 2x + 13y = 156

2x + 13y = 156 ⇒ 2x = 156 - 13y

Ta nhận thấy 13y và 156 đều chia hết cho 13.

Do đó 2x ⋮ 13

Đặt x = 13t (t ∈ Z) thay vào phương trình ta được:

2.13t + 13y = 156 ⇔ 26t + 13y = 156 ⇔ 2t + y = 12 ⇔ y = - 2t + 12

Vậy nghiệm nguyên của phương trình là (x = 13t; y = - 2t + 12) (với t ∈ Z)