A = 2 + 22 + 23 + ..................... + 22018 .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=1+2+2^2+...+2^{2018}\)
\(2A=2+2^3+2^4+...+2^{2019}\)
\(A=2A-A=1-2^{2019}\)
\(B-A=2^{2019}-\left(1-2^{2019}\right)\)
\(B-A=2^{2019}-1+2^{2019}\)
\(B-A=1\)
`#3107`
\(A=1+2+2^2+2^3+...+2^{2018}\) và \(B=2^{2019}\)
Ta có:
\(A=1+2+2^2+2^3+...+2^{2018}\)
\(2A=2+2^2+2^3+...+2^{2019}\)
\(2A-A=\left(2+2^2+2^3+...+2^{2019}\right)-\left(1+2+2^2+2^3+...+2^{2018}\right)\)
\(A=2+2^2+2^3+...+2^{2019}-1-2-2^2-2^3-...-2^{2018}\)
\(A=2^{2019}-1\)
Vậy, \(A=2^{2019}-1\)
Ta có:
\(B-A=2^{2019}-2^{2019}+1=1\)
Vậy, `B - A = 1.`
a) 23 + (-77) + (-23) + 77 =
[23 + (-23)] + [(-77) + 77]
= …0+0=0……
b) (-2 020) + 2 021 + 21 + (-22)
=[(-2 020) + 2 021] + [21 + (-22)]
= …1……+ (-1)……..
= 0.
\(A=\dfrac{21}{22}+\dfrac{22}{23}=\dfrac{967}{506}>1\)
\(B=\dfrac{21+22}{22+23}=\dfrac{43}{45}< 1\)
Vậy \(A>B\)
\(\dfrac{21}{22}\) > \(\dfrac{21}{22+23}\)
\(\dfrac{22}{23}\) > \(\dfrac{22}{22+23}\)
Cộng vế với vế ta có:
A = \(\dfrac{21}{22}\) + \(\dfrac{22}{23}\) > \(\dfrac{21+22}{22+23}\) = B ⇒ A > B
a) \(3.5^2+15.2^2-26\div2\)
= 3.25 + 15.4 - 13
= 75 + 60 - 13
= 135 - 13
= 122
b) \(5^3.2-100\div4+2^3.5\)
= 125.2 - 25 + 8.5
= 250 - 25 + 40
= 225 + 40
= 265
c)\(6^2\div9+50.2-3^3.33\)
= 36 : 9 + 100 - 9.33
= 4 + 100 - 297
= 104 - 297
= -193
d)\(3^2.5+2^3.10-81\div3\)
= 9.5 + 8.10 - 27
= 45 + 80 - 27
= 125 - 27
= 98
e) \(5^{13}\div5^{10}-25.2^2\)
= 53 - 25.4
= 125 - 100
= 25
f) \(20\div2^2+5^9\div5^8\)
= 20 : 4 + 5
= 5 + 5
= 10
A=\(2+2^2+2^3+...+2^{56}\)
2.A=\(2^2+2^3+2^4+...+2^{57}\)
2.A-A=\(2^{57}-2\)
A=\(2^{57}+2\)
(SAI THÔI NHÉ)
Sửa đề: A=2+2^2+2^3+...+2^2017
=>2*A=2^2+2^3+2^4+...+2^2018
=>2A-A=2^2018-2
=>A=2^2018-2
Lp 7 ko bt lm toán
Lp 6
Hỳ Hỳ
..army