K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
24 tháng 9 2018

Lời giải:

Phải thêm điều kiện $a,b,c>0$ nữa bạn nhé

Ta có:

\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\geq a+b+c\)

\(\Leftrightarrow \frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}-a-b-c\geq 0\)

\(\Leftrightarrow \frac{a^2}{b}-(2a-b)+\frac{b^2}{c}-(2b-c)+\frac{c^2}{a}-(2c-a)\geq 0\)

\(\Leftrightarrow \frac{a^2-2ab+b^2}{b}+\frac{b^2-2bc+c^2}{c}+\frac{c^2-2ac+a^2}{a}\geq 0\)

\(\Leftrightarrow \frac{(a-b)^2}{b}+\frac{(b-c)^2}{c}+\frac{(c-a)^2}{a}\geq 0\)

(luôn đúng với mọi $a,b,c>0$)

Do đó ta có đpcm

Dấu "=" xảy ra khi $a=b=c$

AH
Akai Haruma
Giáo viên
24 tháng 9 2018

Hoặc có thể sử dụng BĐT Cauchy như sau:

\(\frac{a^2}{b}+b\geq 2\sqrt{\frac{a^2}{b}.b}=2a\)

\(\frac{b^2}{c}+c\ge 2\sqrt{\frac{b^2}{c}.c}=2b\)

\(\frac{c^2}{a}+a\geq 2\sqrt{\frac{c^2}{a}.a}=2c\)

Cộng theo vế:

\(\Rightarrow \frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}+(a+b+c)\geq 2(a+b+c)\)

\(\Rightarrow \frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\geq a+b+c\) (đpcm)

Dấu "=" xảy ra khi $a=b=c$

NV
19 tháng 5 2021

Ta có đánh giá sau với a không âm:

\(\dfrac{a}{1+a^2}\le\dfrac{36a+3}{50}\)

Thật vậy, BĐT tương đương:

\(\left(36a+3\right)\left(a^2+1\right)\ge50a\)

\(\Leftrightarrow\left(3a-1\right)^2\left(4a+3\right)\ge0\) (luôn đúng)

Tương tự: \(\dfrac{b}{1+b^2}\le\dfrac{36b+3}{50}\) ; \(\dfrac{c}{1+c^2}\le\dfrac{36c+3}{50}\)

Cộng vế: \(VT\le\dfrac{36\left(a+b+c\right)+9}{50}=\dfrac{9}{10}\)

Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{3}\)

19 tháng 5 2021

Ta chứng minh bđt phụ \(\dfrac{a}{1+a^2}\le\dfrac{3}{10}+\dfrac{18}{25}\left(a-\dfrac{1}{3}\right)\)

Thật vậy bđt trên \(\Leftrightarrow\dfrac{-3a^2+10a-3}{10\left(1+a^2\right)}-\dfrac{18}{25}\left(a-\dfrac{1}{3}\right)\le0\)

\(\Leftrightarrow\left(a-\dfrac{1}{3}\right)\left[\dfrac{3\left(3-a\right)}{10\left(1+a^2\right)}-\dfrac{18}{25}\right]\le0\)

\(\Leftrightarrow-\dfrac{36\left(a-\dfrac{1}{3}\right)^2\left(\dfrac{3}{4}+a\right)}{50\left(1+a^2\right)}\le0\) ( luôn đúng với mọi \(a\)\(\ge\)0)

Tương tự cũng có:\(\dfrac{b}{1+b^2}\le\dfrac{3}{10}+\dfrac{18}{25}\left(b-\dfrac{1}{3}\right)\)\(\dfrac{c}{1+c^2}\le\dfrac{3}{10}+\dfrac{18}{25}\left(c-\dfrac{1}{3}\right)\)

Cộng vế với vế => VT\(\le\dfrac{9}{10}+\dfrac{18}{25}\left(a+b+c-1\right)=\dfrac{9}{10}\)

Dấu = xảy ra khi \(a=b=c=\dfrac{1}{3}\)

 

 

NV
28 tháng 8 2021

\(\dfrac{a^2+bc}{b+c}=\dfrac{\left(a+b\right)\left(a+c\right)-a\left(b+c\right)}{b+c}=\dfrac{\left(a+b\right)\left(a+c\right)}{b+c}-a\)

\(\Rightarrow VT=\dfrac{\left(a+b\right)\left(a+c\right)}{b+c}+\dfrac{\left(a+b\right)\left(b+c\right)}{a+c}+\dfrac{\left(a+c\right)\left(b+c\right)}{a+b}-\left(a+b+c\right)\)

Mặt khác áp dụng \(x+y+z\ge\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\)

\(\Rightarrow\dfrac{\left(a+b\right)\left(a+c\right)}{b+c}+\dfrac{\left(a+b\right)\left(b+c\right)}{a+c}+\dfrac{\left(a+c\right)\left(b+c\right)}{a+b}\ge a+b+b+c+a+c=2\left(a+b+c\right)\)

\(\Rightarrow VT\ge2\left(a+b+c\right)-\left(a+b+c\right)=a+b+c\) (đpcm)

20 tháng 5 2018

\(\sum\dfrac{a^3}{a^2+b^2}=a+b+c-\dfrac{ab^2}{a^2+b^2}-\dfrac{bc^2}{b^2+c^2}-\dfrac{ca^2}{c^2+a^2}\ge a+b+c-\dfrac{b}{2}-\dfrac{c}{2}-\dfrac{a}{2}=\dfrac{a+b+c}{2}\) Dấu "=" xảy ra khi: \(a=b=c\)

28 tháng 7 2018

\(\dfrac{a^3}{b^3}+\dfrac{a^3}{b^3}+1+\dfrac{b^3}{c^3}+\dfrac{b^3}{c^3}+1+\dfrac{c^3}{a^3}+\dfrac{c^3}{a^3}+1\ge3\left(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\right)\)

\(\Leftrightarrow2\left(\dfrac{a^3}{b^3}+\dfrac{b^3}{c^3}+\dfrac{c^3}{a^3}\right)\ge3\left(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\right)-3\)

\(\ge2\left(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\right)+3-3=2\left(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\right)\)

\(\Leftrightarrow\dfrac{a^3}{b^3}+\dfrac{b^3}{c^3}+\dfrac{c^3}{a^3}\ge\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\)

27 tháng 7 2018

giả sử \(a>b>c>0\) thì ta có :

\(\dfrac{a^2}{b^2}\left(\dfrac{a}{b}-1\right)+\dfrac{b^2}{c^2}\left(\dfrac{b}{c}-1\right)+\dfrac{c^2}{a^2}\left(\dfrac{c}{a}-1\right)\ge2\dfrac{a}{b}+\dfrac{c^2}{a^2}\left(\dfrac{c}{a}-1\right)\)

\(=\dfrac{2a}{b}+\dfrac{c^3}{a^3}-\dfrac{c^2}{a^2}\ge0\)

làm tương tự cho trường hợp \(c>b>a>0\) ; \(b>a>c\)\(b>c>a\)

\(\Rightarrow\left(đpcm\right)\)

11 tháng 8 2017

Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:

\(VT=\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\)

\(\ge\dfrac{\left(a+b+c\right)^2}{b+c+a+c+a+b}\)

\(=\dfrac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\dfrac{a+b+c}{2}=VP\)

11 tháng 12 2017

\(A=\dfrac{a}{b+c}+\dfrac{b+c}{a}+\dfrac{b}{c+a}+\dfrac{c+a}{b}+\dfrac{c}{a+b}+\dfrac{a+b}{c}\)

\(A=\left(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\right)+\left(\dfrac{b+c}{a}+\dfrac{c+a}{b}+\dfrac{a+b}{c}\right)\)

\(A\ge\dfrac{3}{2}+\dfrac{b+c}{a}+\dfrac{c+a}{b}+\dfrac{a+b}{c}\) (bất đẳng thức Nesbit)

\(A\ge\dfrac{3}{2}+\dfrac{b}{a}+\dfrac{c}{a}+\dfrac{c}{b}+\dfrac{a}{b}+\dfrac{a}{c}+\dfrac{b}{c}\)

\(A\ge\dfrac{3}{2}+\left(\dfrac{b}{a}+\dfrac{a}{b}\right)+\left(\dfrac{c}{a}+\dfrac{a}{c}\right)+\left(\dfrac{b}{c}+\dfrac{c}{b}\right)\)

Áp dụng bất đẳng thức AM-GM cho 2 số dương ta có:

\(A\ge\dfrac{3}{2}+2\sqrt{\dfrac{ab}{ab}}+2\sqrt{\dfrac{ac}{ac}}+2\sqrt{\dfrac{bc}{bc}}\)

\(A\ge\dfrac{3}{2}+2+2+2=\dfrac{15}{2}\left(đpcm\right)\)

Dấu"=" xảy ra khi: \(a=b=c\)