\(\sqrt{x^2+8x+15}=3\sqrt{x+3}+2\sqrt{x+5}-6\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a.
ĐKXĐ: $x\geq 0$
PT $\Leftrightarrow 6\sqrt{2x}-4\sqrt{2x}+5\sqrt{2x}=21$
$\Leftrightarrow 7\sqrt{2x}=21$
$\Leftrightarrow \sqrt{2x}=3$
$\Leftrightarrow 2x=9$
$\Leftrightarrow x=\frac{9}{2}$ (tm)
b.
ĐKXĐ: $x\geq -2$
PT $\Leftrightarrow \sqrt{25(x+2)}+3\sqrt{4(x+2)}-2\sqrt{16(x+2)}=15$
$\Leftrightarrow 5\sqrt{x+2}+6\sqrt{x+2}-8\sqrt{x+2}=15$
$\Leftrightarrow 3\sqrt{x+2}=15$
$\Leftrightarrow \sqrt{x+2}=5$
$\Leftrightarrow x+2=25$
$\Leftrightarrow x=23$ (tm)
c.
$\sqrt{(x-2)^2}=12$
$\Leftrightarrow |x-2|=12$
$\Leftrightarrow x-2=12$ hoặc $x-2=-12$
$\Leftrightarrow x=14$ hoặc $x=-10$
e.
PT $\Leftrightarrow |2x-1|-x=3$
Nếu $x\geq \frac{1}{2}$ thì $2x-1-x=3$
$\Leftrightarrow x=4$ (tm)
Nếu $x< \frac{1}{2}$ thì $1-2x-x=3$
$\Leftrightarrow x=\frac{-2}{3}$ (tm)
![](https://rs.olm.vn/images/avt/0.png?1311)
c.
ĐKXĐ: \(\left[{}\begin{matrix}x\le-5\\x\ge6\end{matrix}\right.\)
\(\sqrt{\left(x-3\right)\left(x-5\right)}+\sqrt{\left(x-3\right)\left(x+5\right)}=\sqrt{\left(x-3\right)\left(x-6\right)}\)
- Với \(x\ge6\) , do \(x-3>0\) pt trở thành:
\(\sqrt{x-5}+\sqrt{x+5}=\sqrt{x-6}\)
Do \(\left\{{}\begin{matrix}\sqrt{x-5}>\sqrt{x-6}\\\sqrt{x+5}>0\end{matrix}\right.\) \(\Rightarrow\sqrt{x-5}+\sqrt{x+5}>\sqrt{x-6}\) pt vô nghiệm
- Với \(x\le-5\) pt tương đương:
\(\sqrt{\left(3-x\right)\left(5-x\right)}+\sqrt{\left(3-x\right)\left(-x-5\right)}=\sqrt{\left(3-x\right)\left(6-x\right)}\)
Do \(3-x>0\) pt trở thành:
\(\sqrt{5-x}+\sqrt{-x-5}=\sqrt{6-x}\)
\(\Leftrightarrow-2x+2\sqrt{x^2-25}=6-x\)
\(\Leftrightarrow2\sqrt{x^2-25}=x+6\) (\(x\ge-6\))
\(\Leftrightarrow4\left(x^2-25\right)=x^2+12x+36\)
\(\Leftrightarrow3x^2-12x-136=0\Rightarrow x=\dfrac{6-2\sqrt{111}}{3}\)
a.
Kiểm tra lại đề, pt này không giải được
b.
ĐKXĐ: \(x\ge0\)
\(\sqrt{x\left(x+1\right)}-\sqrt{x}+1-\sqrt{x+1}=0\)
\(\Leftrightarrow\sqrt{x}\left(\sqrt{x+1}-1\right)-\left(\sqrt{x+1}-1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)\left(\sqrt{x+1}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=1\\\sqrt{x+1}=1\end{matrix}\right.\)
\(\Leftrightarrow...\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(\sqrt{4-2\sqrt{3}}-\sqrt{3}=\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{3}=\sqrt{3}-1-\sqrt{3}=-1\)
b) \(\sqrt{11+6\sqrt{2}}-3+\sqrt{2}=\sqrt{\left(3+\sqrt{2}\right)^2}-3+\sqrt{2}=3+\sqrt{2}-3+\sqrt{2}\)
\(=2\sqrt{2}\)
c) \(x-4+\sqrt{16-8x+x^2}=x-4+\sqrt{\left(x-4\right)^2}=x-4+\left|x-4\right|\)
\(=x-4+x-4\left(x>4\right)=2x-8\)
d) \(\dfrac{x^2-5}{x+\sqrt{5}}=\dfrac{\left(x-\sqrt{5}\right)\left(x+\sqrt{5}\right)}{x+\sqrt{5}}=x-\sqrt{5}\)
e) \(\dfrac{x^2+2\sqrt{2}x+2}{x+\sqrt{2}}=\dfrac{\left(x+\sqrt{2}\right)^2}{x+\sqrt{2}}=x+\sqrt{2}\)
g) \(\dfrac{\sqrt{6}+\sqrt{14}}{2\sqrt{3}+\sqrt{28}}=\dfrac{\sqrt{2}\left(\sqrt{3}+\sqrt{7}\right)}{2\left(\sqrt{3}+\sqrt{7}\right)}=\dfrac{1}{\sqrt{2}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a,=\sqrt{\left(\sqrt{3}\right)^2+2.\sqrt{3}.\sqrt{2}+\left(\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{3}\right)^2-2.\sqrt{3}.\sqrt{2}+\left(\sqrt{2}\right)^2}\\ =\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}\\ =\left|\sqrt{3}+\sqrt{2}\right|-\left|\sqrt{3}-\sqrt{2}\right|\\ =\sqrt{3}+\sqrt{2}-\left(\sqrt{3}-\sqrt{2}\right)\\ =\sqrt{3}+\sqrt{2}-\sqrt{3}+\sqrt{2}\\=2\sqrt{2} \)
\(b,=\sqrt{\left(\sqrt{3}\right)^2+2.\sqrt{3}.1+1}+\sqrt{\left(\sqrt{3}\right)^2-2.\sqrt{3}.1+1}\\ =\sqrt{\left(\sqrt{3}+1\right)^2}+\sqrt{\left(\sqrt{3}-1\right)^2}\\ =\left|\sqrt{3}+1\right|+\left|\sqrt{3}-1\right|\\ =\sqrt{3}+1+\sqrt{3}-1\\ =2\sqrt{3}\)
\(c,=x-4+\sqrt{\left(4^2-2.4.x+x^2\right)}\\ =x-4+\sqrt{\left(4-x\right)^2}\\ =x-4+\left|4-x\right|\\ =x-4+x-4=2x-8\) (vì \(x>4\) )
@seven
ĐKXĐ : \(\hept{\begin{cases}x+3\ge0\\x+5\ge0\end{cases}\Leftrightarrow x\ge-3}\)
Đặt \(\hept{\begin{cases}\sqrt{x+3}=a\\\sqrt{x+5}=b\end{cases}\left(a;b\ge0\right)}\)
\(\Rightarrow\sqrt{x^2+8x+15}=ab\)
Pt có dạng ::
ab = 3a + 2b - 6
<=> 3a - ab + 2b - 6 = 0
<=> a( 3 - b ) + 2 ( b - 3 ) = 0
<=> ( a - 2 ) ( 3 - b ) = 0
Đến đây tự giải tiếp nha ! Muộn rồi ngủ ngon ... BYe !