Trong 6 số tự nhiên bất kì bao giờ cũng chọn được hai số có hiệu chia hết cho 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Khi chia 1 số tự nhiên cho 2, số dư có thể là 0 hoặc 1
=> Khi chia 3 số tự nhiên bất kì cho 2 số dư bằng một trong hai số 0; 1.
=> 2 trong 3 số đó có cùng số dư => Hiệu của 2 số chia hết cho 2
b) Khi chia 1 số tự nhiên cho 5, số dư có thể là 0; 1; 2; 3; 4
=> Khi chia 6 số tự nhiên bất kì cho 5, số dư bằng1 trong 5 số 0; 1; 2; 3; 4.
=> Chắc chắn có 2 trong 6 số đó chia cho 5 có cùng số dư
=> Hiệu của chúng chia hết cho 5
Vậy...
Gọi 3 số cần tìm là a;a+1;a+2
Dễ thấy rằng;
a+2-a=2 chia hết cho 2
Vậy.....................................................
Điều kiện của các số chia hết cho 5 :
tận cùng là 0 hoặc 5
mà đâu phải lúc nào trong 6 số tự nhiên bất kì cũng có 1 số tận cùng la 0 ; 1 số tận cùng là 5
ví dụ :
10 ; 11 ; 12 ; 13 ; 14 ; 15 ; 16 ( đúng )
12 ; 13 ; 14 ; 15 ; 16 ; 17 ; 18 ( sai )
vậy thì điều kiện trên có thể thực hiện trong 1 số trường hợp .
Khi chia 1 số tự nhiên cho 5, số dư có thể là 0; 1; 2; 3; 4
=> Khi chia 6 số tự nhiên bất kì cho 5, số dư bằng1 trong 5 số 0; 1; 2; 3; 4.
=> Chắc chắn có 2 trong 6 số đó chia cho 5 có cùng số dư
=> Hiệu của chúng chia hết cho 5
Vậy...
Bài 1
6 số tự nhiên bất kì khi chia cho 6 thì xảy ra 6 trường hợp về số dư (0;1;2;3;4;5), còn 1 số kia thì cũng có thể xảy ra 1 trong 6 trường hợp
Số này nếu trừ cho 1 trong 6 số kia thì chắc chắn có 1 số thỏa mãn
Bài 2
5 số tự nhiên liên tiêp này chia cho 5 cũng xảy ra 5 th về dư, chứng minh tương tự bài 1. Bạn cố gắng dùng từ hay hơn nha
Đem 12 stn cha cho 11 thì nhận đc 12 số dư .Mà 1 stn khi chia cho 11 se nhận đc trog 11 khả năng dư [ 0 đến 10 ]
ta có :
12/11=1 (dư 1)
Theo nguyên lí dircle sẽ tồn tại ít nhất 1+1=2 (số dư = nhau )
Nghĩa là sẽ có 2 stn khi chia cho 11 có cùng số dư
=> Hiệu 2 số đó chia hết cho 11
Chả bjt có đúng k .Nhưng mik nghĩ là 98%
Khi chia 1 số tự nhiên cho 5, số dư có thể là 0; 1; 2; 3; 4
=> Khi chia 6 số bất kì cho 5, số dư bằng 1 trong 5 số 0;1;2;3;4
=> Chắc chắn có 2 trong 6 số đó chia cho 5 có cùng số dư.
=> Hiệu của chúng chia hết cho 5.
Kết luận:...