\(\text{Rút gọn (a+b)}^3+\left(b+c\right)^3+\left(c+a\right)^3-3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,\(\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a^2b+b^2a+c^2a+ca^2+b^2c+c^2b\right)\)
Tương tự :
\(\left(b+c-a\right)^3=b^3+c^3-a^3+3\left(a^2b-b^2a+ca^2-ac^2+b^2c+c^2b\right)\)
\(\left(b+a-c\right)^3=b^3-c^3+a^3+3\left(a^2b+b^2a-ca^2+ac^2-b^2c+c^2b\right)\)
\(\left(a+c-b\right)^3=c^3+a^3-b^3+3\left(-a^2b+b^2a+ca^2+ac^2+b^2c-c^2b\right)\)
Biểu thức sau khi rút gọn ta được
24abc
b,\(\left(a+b\right)^3=a^3+b^3+3\left(a^2b+b^2a\right)\)
\(\left(c+b\right)^3=c^3+b^3+3\left(c^2b+b^2c\right)\)
\(\left(a+c\right)^3=a^3+c^3+3\left(a^2c+b^2c\right)\)
=>\(\left(a+b\right)^3+\left(b+c\right)^3+\left(c+a\right)^3=\)\(2\left(a^2+b^2+c^2\right)+3\left(a^2b+b^2a+c^2a+ca^2+b^2c+c^2b\right)\)
Lại có
\(3\left(a+b\right)\left(b+c\right)\left(c+a\right)=\left(3\left(a^2b+b^2a+c^2a+ca^2+b^2c+c^2b+2abc\right)\right)\)
Biểu thức khi đó trở thành
\(2\left(a^2+b^2+c^2\right)-6abc=2\left(a^2+b^2+c^2-3abc\right)\)
Tặng vk iu
Đặt x = a+b , y = b+c , z = c+a
Khi đó : \(\left(a+b\right)^3+\left(b+c\right)^3+\left(c+a\right)^3-3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
\(=x^3+y^3+z^3-3xyz=\left(x+y\right)^3+z^3-3xy\left(x+y\right)-3xyz\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2+2xy-yz-xz\right)-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)
\(=\frac{x+y+z}{2}\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]\)
Thay x,y,z bởi a,b,c vào và rút gọn :)
Đặt\(a+b=x\)
\(b+c=y\)
\(c+a=z\)
\(\Rightarrow x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)
\(=\frac{1}{2}\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2\right]\)
\(=\left(a+b+c\right)\left[\left(a-c\right)^2+\left(a-b\right)^2+\left(b-c\right)^2\right]\)
(a+b)3+(b+c)3 +(c+a)3-3(a+b)(b+c)(c+a)
=(a+b+b+c+c+a)[ (a+b)2+(b+c)2+(c+a)2-(a+b)(b+c)-(b+c)(c+a)-(c+a)(a+b)]
=2(a+b+c)[(a+b)2+(b+c)2+(c+a)2 -(a+b)(b+c)-(b+c)(c+a)-(c+a)(a+b)]
Sửa đề cho nó đẹp
\(\frac{\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3}{a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)}\)
\(=\frac{3\left(a-b\right)\left(a-c\right)\left(c-b\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}=-3\)
\(\frac{a^3}{\left(a-b\right)\left(a-c\right)}+\frac{b^3}{\left(b-c\right)\left(b-a\right)}+\frac{c^3}{\left(c-a\right)\left(c-b\right)}\)
\(=\frac{a^3\left(b-c\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}+\frac{b^3\left(c-a\right)}{\left(b-c\right)\left(a-b\right)\left(a-c\right)}+\frac{c^3\left(a-b\right)}{\left(a-c\right)\left(b-c\right)\left(a-b\right)}\)
\(=\frac{a^3\left(b-c\right)+b^3\left(c-a\right)+c^3\left(a-b\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)
\(=\frac{\left(a-b\right)\left(a-c\right)\left(b-c\right)\left(a+b+c\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}=a+b+c\)
(a+b)3+(b+c)3+(c+a)3-3(a+b)(b+c)(c+a)
bạn phân tích ra theo HĐT và nhân đôn thức vs đa thức sẽ dc
=2(a3+b3+c3-3abc)