K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 9 2021

mai em cần rồi, em cản ơn nhiều!khocroiyeu

NV
18 tháng 9 2021

Nếu thực hiện chia theo lược đồ Hoocne thì kết quả như thế này:

\(f\left(x\right)=\left(x^2+2x-3\right)\left(x^3-2x^2+7x-23\right)+68\)

Hay \(f\left(x\right)\) chia \(x^2+2x-3\) được thương \(x^3-2x^2+7x-23\) và dư \(68\)

undefined

9 tháng 9 2021

\(\left(x^4-x^3-3x^2+x+2\right):\left(x^2-1\right)\)

\(=\left[x^2\left(x^2-1\right)-x\left(x^2-1\right)-2\left(x^2-1\right)\right]:\left(x^2-1\right)\)

\(=\left(x^2-1\right)\left(x^2-x-2\right):\left(x^2-1\right)=x^2-x-2\)

NV
6 tháng 1

\(f\left(x\right)=6x^3-7x^2-16x+m\)

Do \(f\left(x\right)\) chia hết \(2x-5\), theo định lý Bezout:

\(f\left(\dfrac{5}{2}\right)=0\Rightarrow6.\left(\dfrac{5}{2}\right)^3-7.\left(\dfrac{5}{2}\right)^2-16.\left(\dfrac{5}{2}\right)+m=0\)

\(\Rightarrow m=-10\)

Khi đó  \(f\left(x\right)=6x^3-7x^2-16x-10\)

Số dư phép chia cho \(3x-2\):

\(f\left(\dfrac{2}{3}\right)=6.\left(\dfrac{2}{3}\right)^3-7.\left(\dfrac{2}{3}\right)^2-16.\left(\dfrac{2}{3}\right)-10=-22\)

6 tháng 1

Do �(�) chia hết 2�−5, theo định lý Bezout:

�(52)=0⇒6.(52)3−7.(52)2−16.(52)+�=0

⇒�=−10

Khi đó  �(�)=6�3−7�2−16�−10

Số dư phép chia cho 3�−2:

�(23)=6.(23)3−7.(23)2−16.(23)−10=−22

31 tháng 8 2017

Giải trên máy Casio fx-570MS ( Casio fx-570 tương tự)

Nhắc lại: Đa thức P(x) chia hết cho ax + b khi và chỉ khi P(-ba)=0

              Dư của phép chia đa thức P(x) cho ax + b là P(-ba)

Quy trình bấm phím như sau:

1. Ghi vào màn hình: 6A3 -7A2 -16A

31 tháng 8 2017

cám ơn bạn nha!

22 tháng 10 2019

2x^3+3x^2-x+a x^2+x-1 2x+1 2x^3+x^2 - - 2x^2-x+a 2x^2+x -2x+a -2x-1 - a+1

Để \(A\left(x\right)⋮B\left(x\right)\Leftrightarrow a+1=0\)

                              \(\Leftrightarrow a=-1\)

Vậy ...

9 tháng 2 2017

Ta có \(F\left(x\right)=g\left(x\right).\left(x+1\right)+4\)

Giả sử \(g\left(x\right)=r\left(x\right).\left(x^2+1\right)+ax+b\)

Suy ra \(F\left(x\right)=r\left(x\right).\left(x+1\right)\left(x^2+1\right)+\left(ax+b\right)\left(x+1\right)+4\)

Đa thức dư là \(h\left(x\right)=\left(ax+b\right)\left(x+1\right)+4\) ta có \(h\left(x\right)=ax^2+\left(a+b\right)x+\left(b+4\right)\)

Theo giả thiết \(h\left(x\right)\) chia \(\left(x^2+1\right)\) dư \(2x+3\)

\(h\left(x\right)=a\left(x^2+1\right)+\left(a+b\right)x+\left(b-a+4\right)\)

\(\Rightarrow\)\(\hept{\begin{cases}a+b=2\\b-a+4=3\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}a=\frac{3}{2}\\b=\frac{1}{2}\end{cases}}\)

Vậy đa thức dư là \(h\left(x\right)=\left(\frac{3}{2}x+\frac{1}{2}\right)\left(x+1\right)+4\)

9 tháng 2 2017

Ta có f(x) chia cho x + 1 dư 4 nên theo bê-du ta có: f(-1) = 4 (1)

Khi chi f(x) cho (x + 1)(x2 + 1) thì phần dư phải là đa thức bậc 2 hay

f(x) = (x + 1)(x2 + 1)Q(x) + ax2 + bx + c

= (x + 1)(x2 + 1)Q(x) + a(x2 + 1)+ bx + c - a

= (x2 + 1)[(x + 1)Q(x) + a] + bx + c - a (2)

Mà f(x) chia cho x2 + 1 dư 2x + 3 (3)

Từ (1), (2), (3) ta suy ra hệ

\(\hept{\begin{cases}b=2\\c-a=3\\a-b+c=4\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}b=2\\a=\frac{3}{2}\\c=\frac{9}{2}\end{cases}}\)

Vậy đa thức dư cần tìm là: \(\frac{3}{2}x^2+2x+\frac{9}{2}\)