K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\overrightarrow{AP}+\overrightarrow{AM}\)

\(=\dfrac{1}{2}\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{AC}\)

\(=\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{AC}\)

17 tháng 9 2023

Trọng tâm của một tam giác cách mỗi đỉnh một khoảng bằng \(\dfrac{2}{3}\)độ dài đường trung tuyến đi qua đỉnh ấy nên:

     \(\begin{array}{l}\dfrac{{GA}}{{AM}} = \dfrac{{GB}}{{BN}} = \dfrac{{GC}}{{CP}} = \dfrac{2}{3}\\ \to GA = \dfrac{2}{3}AM;GB = \dfrac{2}{3}BN;GC = \dfrac{2}{3}CP\end{array}\)

Vậy:

     \(GA + GB + GC = \dfrac{2}{3}AM + \dfrac{2}{3}BN + \dfrac{2}{3}CP = \dfrac{2}{3}(AM + BN + CP)\). 

20 tháng 6 2019

A b C B M N P G

Gọi G là trọng tâm tam giác ABC

Vì là trung tuyến \(\Rightarrow\hept{\begin{cases}BN=\frac{3}{2}BG\\CP=\frac{3}{2}CG\end{cases}}\)

\(\Rightarrow BN+CP=\frac{3}{2}\left(BG+CG\right)\)

Mà theo bđt trong tam giác cho tam giác BGC thì \(BG+GC>BC\)

\(\Rightarrow BN+CP>\frac{3}{2}BC\)

4 tháng 3 2023

câu 2 : 

a) có phải là chứng minh AM ⊥ BC không

xét ΔAMB và ΔAMC, ta có : 

AB = AC (2 cạnh bên của ΔABC cân tại A)

MB = MC (AM là đường trung tuyến của cạnh BC)

AM là cạnh chung

=> ΔAMB = ΔAMC (c.c.c)

=> \(\widehat{AMB}=\widehat{AMC}\) (2 cạnh tương ứng)

mà \(\widehat{AMB}+\widehat{AMC}=180^O\) (kề bù)

\(\Rightarrow\widehat{AMB}=\widehat{AMC}=\dfrac{180^O}{2}=90^O\)

=> AM ⊥ BC

4 tháng 3 2023

loading...

11 tháng 1 2018

5 tháng 4 2021

bạn ơi, hình như không có căn cứ để làm thế thì phải