((a+b)/2)^2 >= ab
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\frac{a+b}{2}\ge\sqrt{ab}\)
\(\Rightarrow a+b\ge2\sqrt{ab}\)
\(\Rightarrow a+b-2\sqrt{ab}\ge0\)
\(\Rightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) với mọi x
->Đpcm
2 phần kia mai tui lm nốt cho h đi ngủ
\(\sum\dfrac{a}{b^2+bc+c^2}\ge\dfrac{\left(a+b+c\right)^2}{ab^2+abc+ac^2+bc^2+abc+ba^2+ca^2+abc+cb^2}=\dfrac{\left(a+b+c\right)^2}{\left(a+b+c\right)\left(ab+bc+ac\right)}=\dfrac{a+b+c}{ab+bc+ac}\)
bạn không được rút gọn (a-b) ở 2 vế vì a=b => a-b=0 nếu 2 vế đều chia cho (a-b) tức là chia cho 0 mà chia cho 0 thì ko chia đc
VẬY BÀI CỦA BẠN LÀ VÔ LÝ
Chắc như vầy quá: Do \(\hept{\begin{cases}a>2\\b>2\end{cases}}\Rightarrow\left(a-2\right)\left(b-2\right)>0\)
\(\Leftrightarrow ab-2a-2b+2>0\Leftrightarrow ab>2\left(a+b-1\right)\) (chuyển vế và đặt 2 làm thừa số chung)
Ta cần c/m: \(2\left(a+b-1\right)>a+b\Leftrightarrow2a+2b-2-a-b>0\)
\(\Leftrightarrow a+b-2>0\).Điều này hiển nhiên đúng do a,b > 2 nên a + b > 4
Suy ra \(a+b-2>4-2=2>0\)
Do đó bài toán đã được chứng minh.
Mình nghĩ có cách này đúng hơn thì phải (cách kia không chắc lắm chứ cách này thì chắc rồi):
\(a>2;b>2\Rightarrow\frac{1}{a}< \frac{1}{2};\frac{1}{b}< \frac{1}{2}\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}< \frac{1}{2}+\frac{1}{2}=1\)
Hay \(\frac{a+b}{ab}< 1\Leftrightarrow a+b< ab\)
Vậy ta có điều phải chứng minh.
\(ab>a+b\Leftrightarrow ab-a-b>0\Leftrightarrow a\left(b-1\right)-b>0\)
Cộng 1 vào cả 2 vế của BĐT \(a\left(b-1\right)-b>0\) ta được:
\(a\left(b-1\right)-b+1>1\)
\(\Leftrightarrow a\left(b-1\right)-\left(b-1\right)>1\)
\(\Leftrightarrow\left(a-1\right)\left(b-1\right)>1\)
Mà \(a>b,b>2\) nên \(\left(a-1\right)\left(b-1\right)>1\) luôn đúng \(\forall a,b>2.\)
\(\left[\frac{\left(a+b\right)}{2}\right]^2\ge ab\)
\(=\frac{\left(a+b\right)^2}{4}\ge ab\)
\(=\frac{a^2+2ab+b^2}{4}\ge ab\)
\(\Leftrightarrow a^2+2ab+b^2\ge4ab\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\left(đpcm\right)\)
Ta có:
\(\left(\frac{\left(a+b\right)}{2}\right)^2\ge ab\)
\(\Leftrightarrow a^2+2ab+b^2\ge4ab\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)
ĐPCM