K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 9 2018

\(\left[\frac{\left(a+b\right)}{2}\right]^2\ge ab\)

\(=\frac{\left(a+b\right)^2}{4}\ge ab\)

\(=\frac{a^2+2ab+b^2}{4}\ge ab\)

\(\Leftrightarrow a^2+2ab+b^2\ge4ab\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\left(đpcm\right)\)

21 tháng 9 2018

Ta có:

\(\left(\frac{\left(a+b\right)}{2}\right)^2\ge ab\)

\(\Leftrightarrow a^2+2ab+b^2\ge4ab\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)

ĐPCM

6 tháng 9 2016

a)\(\frac{a+b}{2}\ge\sqrt{ab}\)

\(\Rightarrow a+b\ge2\sqrt{ab}\)

\(\Rightarrow a+b-2\sqrt{ab}\ge0\)

\(\Rightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) với mọi x

->Đpcm

2 phần kia mai tui lm nốt cho h đi ngủ

6 tháng 6 2016

Do a=b nên ở bước => a(b-a)=(b-a)(b+a)  đã bằng 0 rồi

12 tháng 10 2017

sai ở chỗ  ab + a^2 - 2ab

19 tháng 5 2018

\(\sum\dfrac{a}{b^2+bc+c^2}\ge\dfrac{\left(a+b+c\right)^2}{ab^2+abc+ac^2+bc^2+abc+ba^2+ca^2+abc+cb^2}=\dfrac{\left(a+b+c\right)^2}{\left(a+b+c\right)\left(ab+bc+ac\right)}=\dfrac{a+b+c}{ab+bc+ac}\)

25 tháng 5 2018

Đúng rầu đấy

6 tháng 9 2015

bạn không được rút gọn (a-b) ở 2 vế vì a=b => a-b=0 nếu 2 vế đều chia cho (a-b) tức là chia cho 0 mà chia cho 0 thì ko chia đc 

    VẬY BÀI CỦA BẠN LÀ VÔ LÝ 

2 tháng 12 2014

sai ở chỗ b(a-b)=ab-bb không =(a+b)(a-b)

10 tháng 5 2019

Chắc như vầy quá: Do \(\hept{\begin{cases}a>2\\b>2\end{cases}}\Rightarrow\left(a-2\right)\left(b-2\right)>0\)

\(\Leftrightarrow ab-2a-2b+2>0\Leftrightarrow ab>2\left(a+b-1\right)\) (chuyển vế và đặt 2 làm thừa số chung)

Ta cần c/m: \(2\left(a+b-1\right)>a+b\Leftrightarrow2a+2b-2-a-b>0\)

\(\Leftrightarrow a+b-2>0\).Điều này hiển nhiên đúng do a,b > 2 nên a + b > 4

Suy ra \(a+b-2>4-2=2>0\)

Do đó bài toán đã được chứng minh.

13 tháng 5 2019

Mình nghĩ có cách này đúng hơn thì phải (cách kia không chắc lắm chứ cách này thì chắc rồi):

\(a>2;b>2\Rightarrow\frac{1}{a}< \frac{1}{2};\frac{1}{b}< \frac{1}{2}\)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}< \frac{1}{2}+\frac{1}{2}=1\)

Hay \(\frac{a+b}{ab}< 1\Leftrightarrow a+b< ab\) 

Vậy ta có điều phải chứng minh.

7 tháng 5 2018

\(ab>a+b\Leftrightarrow ab-a-b>0\Leftrightarrow a\left(b-1\right)-b>0\)

Cộng 1 vào cả 2 vế của BĐT \(a\left(b-1\right)-b>0\) ta được:

\(a\left(b-1\right)-b+1>1\)

\(\Leftrightarrow a\left(b-1\right)-\left(b-1\right)>1\)

\(\Leftrightarrow\left(a-1\right)\left(b-1\right)>1\)

\(a>b,b>2\) nên \(\left(a-1\right)\left(b-1\right)>1\) luôn đúng \(\forall a,b>2.\)