Giải các pt sau( phương pháp đạt ẩn phụ đưa về pt đẳng cấp )
1. \(4x^2+12x=9=7x\sqrt{4x-3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
ĐKXĐ:.........
PT \(\Leftrightarrow (4x^2-12x+11)-5\sqrt{4x^2-12x+11}-11=0\)
Đặt \(\sqrt{4x^2-12x+11}=t\)
\(\Rightarrow t^2-5t-11=0\)
\(\Rightarrow \left[\begin{matrix} t=\frac{5+\sqrt{69}}{2}\\ t=\frac{5-\sqrt{69}}{2}\end{matrix}\right.\). Vì $t$ không âm nên \(t=\frac{5+\sqrt{69}}{2}\)
\(\Rightarrow 4x^2-12x+11=t^2=\frac{47+5\sqrt{69}}{2}\)
\(\Leftrightarrow 4x^2-12x-\frac{25+5\sqrt{69}}{2}=0\)
\(\Rightarrow x=\frac{1}{4}\left(6\pm \sqrt{86+10\sqrt{69}}\right)\) (thỏa mãn)
Vậy...........
P/s: Thực chất chỉ cần có hướng làm là được, nhưng đề ra dở ở cái số quá xấu chỉ tổ làm vất học sinh chứ không giải quyết được gì có ích.
Ta có ; \(4x^2+12x=9+7x\sqrt{4x-3}\)(ĐKXĐ : \(x\ge\frac{3}{4}\))
\(\Leftrightarrow4x^2+5x-9=7x\left(\sqrt{4x-3}-1\right)\)
Xét vế trái : \(4x^2+5x-9=4\left(x-1\right)\left(x+\frac{9}{4}\right)=\left[\left(4x-3\right)-1\right]\left(x+\frac{9}{4}\right)=\left(\sqrt{4x-3}-1\right)\left(\sqrt{4x-3}+1\right)\left(x+\frac{9}{4}\right)\)
Suy ra phương trình : \(\left(\sqrt{4x-3}-1\right)\left(\sqrt{4x-3}+1\right)\left(x+\frac{9}{4}\right)=7x\left(\sqrt{4x-3}-1\right)\)
\(\Leftrightarrow\left(\sqrt{4x-3}-1\right)\left[\left(\sqrt{4x-3}+1\right)\left(x+\frac{9}{4}\right)-7x\right]=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{4x-3}-1=0\\\left(\sqrt{4x-3}+1\right)\left(x+\frac{9}{4}\right)-7x=0\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}x=1\\x=3\end{cases}}\)(TMDK)
Bài này liên hợp
ĐKXĐ: \(x\ge\frac{3}{4}\)
\(4x^2+12x-16-7x\sqrt{4x-3}+7=0\)
\(\Rightarrow\frac{\left(4x^2+12x\right)^2-16^2}{4x^2+12x+16}-\frac{\left(7x\sqrt{4x-3}\right)^2-7^2}{7x\sqrt{4x-3}+7}=0\)
\(\Rightarrow\frac{16\left(x-1\right)\left(x+4\right)\left(x^2+3x+4\right)}{4x^2+12x+16}-\frac{196x^3-147x^2-49}{7x\sqrt{4x-3}+7}=0\)
\(\Rightarrow\frac{16\left(x-1\right)\left(x+4\right)\left(x^2+3x+4\right)}{4x^2+12x+6}-\frac{\left(x-1\right)\left(4x^2+x+1\right)49}{7x\sqrt{4x-3}+7}=0\)
\(\Rightarrow\left(x-1\right)\left[\frac{16\left(x+4\right)\left(x^2+3x+4\right)}{4x^2+12x+6}-\frac{49\left(4x^2+x+1\right)}{7x\sqrt{4x-3}+7}\right]=0\)
Vì \(\frac{16\left(x+4\right)\left(x^2+3x+4\right)}{4x^2+12x+6}-\frac{49\left(4x^2+x+1\right)}{7x\sqrt{4x-3}+7}>0\)
=> x - 1 = 0 => x = 1
Vậy x = 1
ĐKXĐ: \(x\ge\dfrac{3}{4}\)
\(\Leftrightarrow\sqrt{5x^2+5x}=\sqrt{8x^2+10x-12}\) (1)
\(\Leftrightarrow\left(\sqrt{5x^2+5x}\right)^2=\left(\sqrt{8x^2+10x-12}\right)^2\)
\(\Leftrightarrow5x^2+5x=8x^2+10x-12\)
\(\Leftrightarrow5x^2+5x-\left(8x^2+10x-12\right)=8x^2+10x-12-\left(8x^2+10x-12\right)\)
\(\Leftrightarrow-3x^2-5x+12=0\)
\(\Leftrightarrow\left(-3x+4\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}-3x+4=0\\x+3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}-3x=-4\\x=-3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{4}{3}\left(OK\right)\\x=-3\left(loại\right)\end{matrix}\right.\)
Vậy tập nghiệm phương trình (1) là \(S=\left\{\dfrac{4}{3}\right\}\)
\(\sqrt{4x^2-12x+9}+3=2x\)
<=>\(\sqrt{4x^2-12x+9}=2x-3\)
<=>\(4x^2-12x+9=\left(2x-3\right)^2\)
<=>\(4x^2-12x+9=4x^2-12x+9\)
<=>\(4x^2-12x+9-4x^2+12x-9=0\)
<=>0=0( luôn đúng )
=> phương trình trên có vô số nghiệm
Vậy phương trình trên có vô số nghiệm
Ta có: \(\sqrt{4x^2-12x+9}+3=2x\)
\(\Leftrightarrow\left|2x-3\right|=2x-3\)
\(\Leftrightarrow2x-3\ge0\)
hay \(x\ge\dfrac{3}{2}\)
\(1.\sqrt{16-8x+x^2}=4-x\)
\(\sqrt{\left(4-x\right)^2}=4-x\)
\(4-x-4+x=0\)
= 0 phương trình vô nghiệm.
\(2.\sqrt{4x^2-12x+9}=2x-3\)
\(\)\(\sqrt{\left(2x-3\right)^2}=2x-3\)
\(2x-3-2x+3=0\)
= 0 phương trình vô nghiệm.
a: Ta có: \(\sqrt{16-8x+x^2}=4-x\)
\(\Leftrightarrow\left|4-x\right|=4-x\)
hay \(x\le4\)
b: Ta có: \(\sqrt{4x^2-12x+9}=2x-3\)
\(\Leftrightarrow\left|2x-3\right|=2x-3\)
hay \(x\ge\dfrac{3}{2}\)
Đặt m = x 2 – 2x
Ta có: x 2 - 2 x 2 – 2 x 2 + 4x – 3 = 0
⇔ x 2 - 2 x 2 – 2( x 2 – 2x) – 3 = 0
⇔ m 2 – 2m – 3 = 0
Phương trình m 2 – 2m – 3 = 0 có hệ số a = 1, b = -2, c = -3 nên có dạng a – b + c = 0
Suy ra: m 1 = -1, m 2 = 3
Với m = -1 ta có: x 2 – 2x = -1 ⇔ x 2 – 2x + 1 = 0
Phương trình x 2 – 2x + 1 = 0 có hệ số a = 1, b = -2, c = 1 nên có dạng a + b + c = 0
Suy ra: x 1 = x 2 = 1
Với m = 3 ta có: x 2 – 2x = 3 ⇔ x 2 – 2x – 3 = 0
Phương trình x 2 – 2x – 3 = 0 có hệ số a = 1, b = -2, c = -3 nên có dạng a – b + c = 0
Suy ra: x 1 = -1, x 2 = 3
Vậy phương trình đã cho có 3 nghiệm: x 1 = 1, x 2 = -1, x 3 = 3