K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 9 2018

A B C D M

Gọi M là giao điểm của 2 đoạn thẳng AB và CD tại trung điểm của mỗi đoạn thẳng

Do đó: AM= MB; CM= MD 

Ta xét \(\Delta ACM\) và \(\Delta BDM\)có:

  AM = MB 

   CM= MD

\(\widehat{AMC}=\widehat{BMD}\)(Vì là 2 góc đôi đỉnh)

Do đó: \(\Delta ACM\) = \(\Delta BDM\)(c-g-c)

Vậy AC=BD (cặp cạnh tương ứng)

      \(\widehat{CAM}=\widehat{MBD}\)(cặp cạnh tương ứng)

mà \(\widehat{CAM}và\widehat{MBD}\) là cặp góc so le trong

 Nên \(AC\)song song với BD

20 tháng 2 2019

a, dễ tự làm 

b, xét tam giác CAB và tam giác DAB có : AB chung

AC = AD (gt)

góc CAB = góc DAB = 90

=> tam giác CAB = tam giác DAB (2cgv) 

=> góc CBA = góc DBA (đn)

xét tam giác AFB và tam giác AEB có : AB chung

góc AFB = góc AEB = 90

=>  tam giác AFB = tam giác AEB (ch - gn)

2 tháng 12 2015

c. Bạn C/m Tam Giác HOF- Tam giác KOA đồng dạng

=>OH/OK=OF/OA

=>OK.OF= OH.OA=OB^2=OD^2

=>OK/OD=OD/OF

=> Tam giác ODK và Tam giác OFD đồng dạng

=>Tam giác ODF vuông tại D

=>FD la tiếp tuyến của (O) (đpcm)

d. EI=BI=IA (IE la trung tuyến của tam giác vuông ABE)

=>góc IEB=góc IBE; Cmtt ta có góc FDE = góc FED

mà (góc IBE+ góc FDE)= 90 nên (góc IEB+góc FED)=90

=> F,E,I thẳng hàng

Ta có BINF là hình bình hành nên  FN=BI=IA => IANF la hbh 

=> AN=IF=IE+EF=IB+DF=FN+DF=DN (đpcm)

 

9 tháng 4 2019

A, 

xét \(\Delta ABD\)và \(\Delta ACD\)

CÓ \(\hept{\begin{cases}AB=AC\\chungAD\\BD=DC\end{cases}}\)

SUY RA \(\Delta ABD\)=\(\Delta ACD\) (C.C.C)  (1)

=> \(\widehat{BDA}\)=\(\widehat{CDA}\)

MÀ \(\widehat{BDA}\)+\(\widehat{CDA}\)=180

=> \(\widehat{BDA}\)=\(\widehat{CDA}\)=90

B,  (1) => BC=DC=1/2 BC=8

ÁP DỤNG ĐỊNH LÍ PITAGO TA CÓ

\(AB^2=AD^2+BD^2\)

=> AD^2=36

=>AD=6

9 tháng 4 2019

c, vì M là trọng tâm nên AM=2/3AD=4

d