K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 9 2018

Bài 1:

\(A=2x+2y-y\)

\(A=2x+y\)

Thay x = 2,5 và y = 3/4 vào A

\(A=2.2,5+\dfrac{3}{4}\)

\(A=5+\dfrac{3}{4}\)

\(A=\dfrac{23}{4}\)

\(B=\dfrac{5a}{3}-\dfrac{3}{b}\)

Thay a = 1/3 và b = 0,25 vào B

\(B=\dfrac{5.\dfrac{1}{3}}{3}-\dfrac{3}{0,25}\)

\(B=\dfrac{5}{9}-12\)

\(B=-\dfrac{103}{9}\)

Bài 2:

a) \(\left(2x-\dfrac{1}{2}\right).2+\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}\right):\dfrac{1}{8}=1\)

\(\Rightarrow4x-1+\dfrac{26}{3}=1\)

\(\Rightarrow4x+\dfrac{23}{3}=1\)

\(\Rightarrow4x=1-\dfrac{23}{3}\)

\(\Rightarrow4x=-\dfrac{20}{3}\)

\(\Rightarrow x=-\dfrac{5}{3}\)

b) \(\dfrac{x+1}{65}+\dfrac{x+3}{63}=\dfrac{x+5}{61}+\dfrac{x+7}{59}\)

\(\Rightarrow\dfrac{x+1}{65}+1+\dfrac{x+3}{63}+1=\dfrac{x+5}{61}+1+\dfrac{x+7}{59}+1\)

\(\Rightarrow\dfrac{x+66}{65}+\dfrac{x+66}{63}=\dfrac{x+66}{61}+\dfrac{x+66}{59}\)

\(\Rightarrow\left(x+66\right)\left(\dfrac{1}{65}+\dfrac{1}{63}\right)=\left(x+66\right)\left(\dfrac{1}{61}+\dfrac{1}{59}\right)\)

\(\Rightarrow\left(x+66\right)\left(\dfrac{1}{65}+\dfrac{1}{63}\right)-\left(x+66\right)\left(\dfrac{1}{61}+\dfrac{1}{59}\right)=0\)

\(\Rightarrow\left(x+66\right)\left(\dfrac{1}{65}+\dfrac{1}{63}-\dfrac{1}{61}-\dfrac{1}{59}\right)=0\)

\(\dfrac{1}{65}+\dfrac{1}{63}-\dfrac{1}{61}-\dfrac{1}{59}\ne0\)

\(\Rightarrow x+66=0\)

\(\Rightarrow x=-66\)

Bài 3:

\(A=\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{4}\right)...\left(1-\dfrac{1}{n}\right)\)

\(A=\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}...\dfrac{n-1}{n}\)

\(A=\dfrac{1}{n}\)

21 tháng 3 2020

a)\(2x^3+7x^2+7x+2=0\)

\(\Leftrightarrow2\cdot\left(x^3+1\right)+7x\cdot\left(x+1\right)=0\)

\(\Leftrightarrow2\cdot\left(x+1\right)\cdot\left(x^2+x+1\right)+7x\cdot\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\cdot\left[2\cdot\left(x^2+x+1\right)+7x\right]=0\)

\(\Leftrightarrow\left(x+1\right)\cdot\left(2x^2-2x+2+7x\right)=0\)

\(\Leftrightarrow\left(x+1\right)\cdot\left(2x^2+5x+2\right)=0\)

\(\Leftrightarrow\left(x+1\right)\cdot\left(2x+1\right)\cdot\left(x+2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x+1=0\\2x+1=0\\x+2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-1\\x=\frac{-1}{2}\\x=-2\end{matrix}\right.\)

21 tháng 3 2020

b)\(\frac{x+1}{65}+\frac{x+3}{63}=\frac{x+5}{61}+\frac{x+7}{59}\)

\(\Leftrightarrow\frac{x+1}{65}+\frac{x+3}{63}-\frac{x+5}{61}-\frac{x+7}{59}=0\)

\(\Leftrightarrow\left(\frac{x+1}{65}+1\right)+\left(\frac{x+3}{63}+1\right)-\left(\frac{x+5}{61}+1\right)-\left(\frac{x+7}{59}+1\right)=0\)

\(\Leftrightarrow\frac{x+66}{65}+\frac{x+66}{63}-\frac{x+66}{61}-\frac{x+66}{59}=0\)

\(\Leftrightarrow\left(x+66\right)\cdot\left(\frac{1}{65}+\frac{1}{63}-\frac{1}{61}-\frac{1}{59}\right)=0\)

\(\Rightarrow x+66=0\)

\(\Rightarrow x=-66\)

7 tháng 12 2020

bạn viết thế này khó nhìn quá

26 tháng 11 2021

nhìn hơi đau mắt nhá bạn hoa mắt quá

30 tháng 6 2021

\(1.\)

\(-17-\left(x-3\right)^2\)

Ta có: \(\left(x-3\right)^2\ge0\)với \(\forall x\)

\(\Leftrightarrow-\left(x-3\right)^2\le0\)với \(\forall x\)

\(\Leftrightarrow17-\left(x-3\right)^2\le17\)với \(\forall x\)

Dấu '' = '' xảy ra khi: 

\(\left(x-3\right)^2=0\)

\(\Leftrightarrow x-3=0\)

\(\Leftrightarrow x=3\)

Vậy \(Max=-17\)khi \(x=3\)

30 tháng 6 2021

\(2.\)

\(A=x\left(x+1\right)+\frac{3}{2}\)

\(A=x^2+x+\frac{3}{2}\)

\(A=\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)

\(\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)

\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)

Vậy \(Max=\frac{5}{4}\)khi \(x=\frac{-1}{2}\)

5 tháng 2 2021

1, Ta có: 3-x2+2x=-(x2-2x+1)+4=-(x-1)2+4

vì (x-1)2 luôn lớn hơn hoặc bằng không với mọi x-->-(x-1)nhỏ hơn hoặc bằng 0 với mọi x

vậy giá trị lớn nhất của biểu thức 3-x2+2x là 4

5 tháng 2 2021

các bài giá trị  nhỏ nhất còn lại làm tương tự bạn nhé

chỉ cần đưa về nhân tử chung hoặc hằng đẳng thức là được