Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
nhìu dữ
a)3/2
b)-1/3
c)-5/6
d)0
e)-1/2
Bài 2
a=3
b=1/2
c=-1/3
d=0
e=9
f=-2/3
A = 2\(x^2\)y + \(xy\) - 3\(xy\)
Thay \(x\) = -2; y = 4 vào biểu thức A ta có:
A = 2\(\times\) (-2)2 \(\times\) 4 + (-2) \(\times\) 4 - 3 \(\times\) (-2) \(\times\) 4
A = 2 \(\times\) 4 \(\times\) 4 - 8 + 6 \(\times\) 4
A = 8 \(\times\) 4 - 8 + 24
A = 32 - 8 + 24
A = 24 + 24
A = 48
B = (2\(x^2\) + \(x\) - 1) - ( \(x^2+5x-1\) )
Thay \(x\) = - 2 vào biểu thức B ta có:
B = { 2\(\times\)(-2)2 + (-2) - 1} - { (-2)2 +5\(\times\)(-2) - 1}
B = { 2 \(\times\) 4 - 3} - { 4 - 10 - 1}
B = { 8 - 3} - { 4 - 11}
B = 5 - (-7)
B = 5 + 7
B = 12
Bài : 5
a) Ta có : A = 3 + |4 - x|
Vì : \(\left|4-x\right|\ge0\forall x\)
Nên : A = 3 + |4 - x| \(\ge3\forall x\)
Vậy Amin = 3 khi x = 4
b) Ta có : B = 5|1 - 4x| - 1
Vì \(\text{5|1 - 4x|}\ge0\forall x\)
Nên : B = 5|1 - 4x| - 1 \(\ge-1\forall x\)
Vậy Bmin = -1 khi x = 1/4
a)\(\left|2x-3\right|=6\)
\(\Rightarrow\orbr{\begin{cases}2x-3=6\\2x-3=-6\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}...\\...\end{cases}}\)
b)\(2.\left|3x+1\right|=5\)
\(\left|3x+1\right|=2,5\)
\(\Rightarrow\orbr{\begin{cases}3x+1=2,5\\3x+1=-2,5\end{cases}}\Rightarrow\orbr{\begin{cases}...\\...\end{cases}}\)
c)\(7,5-3\left|5-2x\right|=-4,5\)
\(3\left|5-2x\right|=12\)
\(\left|5-2x\right|=4\)
\(...\)
Bài 1:
|\(x\)| = 1 ⇒ \(x\) \(\in\) {-\(\dfrac{1}{3}\); \(\dfrac{1}{3}\)}
A(-1) = 2(-\(\dfrac{1}{3}\))2 - 3.(-\(\dfrac{1}{3}\)) + 5
A(-1) = \(\dfrac{2}{9}\) + 1 + 5
A (-1) = \(\dfrac{56}{9}\)
A(1) = 2.(\(\dfrac{1}{3}\) )2- \(\dfrac{1}{3}\).3 + 5
A(1) = \(\dfrac{2}{9}\) - 1 + 5
A(1) = \(\dfrac{38}{9}\)
|y| = 1 ⇒ y \(\in\) {-1; 1}
⇒ (\(x;y\)) = (-\(\dfrac{1}{3}\); -1); (-\(\dfrac{1}{3}\); 1); (\(\dfrac{1}{3};-1\)); (\(\dfrac{1}{3};1\))
B(-\(\dfrac{1}{3}\);-1) = 2.(-\(\dfrac{1}{3}\))2 - 3.(-\(\dfrac{1}{3}\)).(-1) + (-1)2
B(-\(\dfrac{1}{3}\); -1) = \(\dfrac{2}{9}\) - 1 + 1
B(-\(\dfrac{1}{3}\); -1) = \(\dfrac{2}{9}\)
B(-\(\dfrac{1}{3}\); 1) = 2.(-\(\dfrac{1}{3}\))2 - 3.(-\(\dfrac{1}{3}\)).1 + 12
B(-\(\dfrac{1}{3};1\)) = \(\dfrac{2}{9}\) + 1 + 1
B(-\(\dfrac{1}{3}\); 1) = \(\dfrac{20}{9}\)
B(\(\dfrac{1}{3};-1\)) = 2.(\(\dfrac{1}{3}\))2 - 3.(\(\dfrac{1}{3}\)).(-1) + (-1)2
B(\(\dfrac{1}{3}\); -1) = \(\dfrac{2}{9}\) + 1 + 1
B(\(\dfrac{1}{3}\); -1) = \(\dfrac{20}{9}\)
B(\(\dfrac{1}{3}\); 1) = 2.(\(\dfrac{1}{3}\))2 - 3.(\(\dfrac{1}{3}\)).1 + (1)2
B(\(\dfrac{1}{3}\); 1) = \(\dfrac{2}{9}\) - 1 + 1
B(\(\dfrac{1}{3}\);1) = \(\dfrac{2}{9}\)
Bài 1:
\(A=2x+2y-y\)
\(A=2x+y\)
Thay x = 2,5 và y = 3/4 vào A
\(A=2.2,5+\dfrac{3}{4}\)
\(A=5+\dfrac{3}{4}\)
\(A=\dfrac{23}{4}\)
\(B=\dfrac{5a}{3}-\dfrac{3}{b}\)
Thay a = 1/3 và b = 0,25 vào B
\(B=\dfrac{5.\dfrac{1}{3}}{3}-\dfrac{3}{0,25}\)
\(B=\dfrac{5}{9}-12\)
\(B=-\dfrac{103}{9}\)
Bài 2:
a) \(\left(2x-\dfrac{1}{2}\right).2+\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}\right):\dfrac{1}{8}=1\)
\(\Rightarrow4x-1+\dfrac{26}{3}=1\)
\(\Rightarrow4x+\dfrac{23}{3}=1\)
\(\Rightarrow4x=1-\dfrac{23}{3}\)
\(\Rightarrow4x=-\dfrac{20}{3}\)
\(\Rightarrow x=-\dfrac{5}{3}\)
b) \(\dfrac{x+1}{65}+\dfrac{x+3}{63}=\dfrac{x+5}{61}+\dfrac{x+7}{59}\)
\(\Rightarrow\dfrac{x+1}{65}+1+\dfrac{x+3}{63}+1=\dfrac{x+5}{61}+1+\dfrac{x+7}{59}+1\)
\(\Rightarrow\dfrac{x+66}{65}+\dfrac{x+66}{63}=\dfrac{x+66}{61}+\dfrac{x+66}{59}\)
\(\Rightarrow\left(x+66\right)\left(\dfrac{1}{65}+\dfrac{1}{63}\right)=\left(x+66\right)\left(\dfrac{1}{61}+\dfrac{1}{59}\right)\)
\(\Rightarrow\left(x+66\right)\left(\dfrac{1}{65}+\dfrac{1}{63}\right)-\left(x+66\right)\left(\dfrac{1}{61}+\dfrac{1}{59}\right)=0\)
\(\Rightarrow\left(x+66\right)\left(\dfrac{1}{65}+\dfrac{1}{63}-\dfrac{1}{61}-\dfrac{1}{59}\right)=0\)
Vì \(\dfrac{1}{65}+\dfrac{1}{63}-\dfrac{1}{61}-\dfrac{1}{59}\ne0\)
\(\Rightarrow x+66=0\)
\(\Rightarrow x=-66\)
Bài 3:
\(A=\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{4}\right)...\left(1-\dfrac{1}{n}\right)\)
\(A=\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}...\dfrac{n-1}{n}\)
\(A=\dfrac{1}{n}\)