cho tam giác ABC vuống tại A dường có AH. biết AC=12cm BC=15cm a tính HA,HB,HC b gọi E.F là hình chiếu vuống góc của H lần lượt lên AB,AC .
a tính HA,HB,HC
b gọi E.F là hình chiếu vuống góc của H lầ lượt lên AB,AC .CM AE.AB=AF.AC
c CM HE2+HF2=HB.HC
Bài 2 cho hình vuông ABCD. I là một điểm thuộc BC. AI cắt CD tại M. kẻ DH và BK cùng vuông với AI
a CM AH=BK
b CM HD.AI luôn không đổi khi I di động trên cạnh BC
Câu 1:
a: AB=9cm
\(HA=\dfrac{9\cdot12}{15}=\dfrac{108}{15}=7.2\left(cm\right)\)
\(HB=\dfrac{9^2}{15}=5.4\left(cm\right)\)
HC=15-5,4=9,6cm
b: \(AE\cdot AB=AH^2\)
\(AF\cdot AC=AH^2\)
Do đó: \(AE\cdot AB=AF\cdot AC\)
c: \(HE^2+HF^2\)
\(=FE^2=AH^2\)
\(=HB\cdot HC\)