Chứng minh rằng
a) Các số có dạng aa chia hết cho 11
b) Các số có dạng aaa chia hết cho 37
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) aa = a.11 chia hết cho 11
b) aaa = 100.a+10 a+a = 111.a chia hết cho 37 (vì 111 chia hết cho 37)
c) aaaaaa = 111111.a chia hết cho 37 (vì 111111 chia hết cho 37)
d) abcabc = 100000a+10000b+1000c+100a+10b+c = 100100.a+10010b+1001c
ta thấy 100100.a chia hết cho 11 ( vì 100100 chia hết cho 11)
10010b chia hết cho 11 ( vì 10010 chia hết cho 11)
1001c chia hết cho 11 ( vì 1001 chia hết cho 11)
Vậy 100100.a+10010b+1001c chia hết cho 11 hay abcabc chia hết cho 11
e) C aaaaaa = 111111a chia hết cho 7 ( 111111 chia hết cho 7)
a)aaa=a*111 mà 111=3*37 chia hết cho 37
b)aaa aaa=a*111 111 mà 111 111=3*7*11*13*37 chia hết cho 7
c)abc abc=abc*1001 mà 1001=7*11*13 chia hết cho 11.
a ) aaa=a.111=a.(3.37)
=>aaa bao giờ cũng chia hết cho 37
b) aaaaaa=a.111111=a.(3.37037)
=> aaaaaa bao giờ cũng chia hết cho 3
c) abcabc=abc.1001=abc.(7.13.11)
=> abcabc bao giờ cũng chia hết cho 13;11
d) ab+ba=(10a+b)+(10b+a)=(10a+a)+(10b+b)=11a+11b
=> ab+ba chia hết cho 11
ủng hộ nha
a) aaa = 111a = 37 . 3 . a
b) aaaaaa = 111111a = 37037 . 3 . a
c) abcabc = 1001abc = 77.13 . abc
abcabc = 1001abc = 77.13.abc = 7 .11.13.abc
d) (ab + ba) = 10a + b + 10b + a =11a + 11b = 11.(a+b)
aaa = a.100+a.10+a.1
= a.(100+10+1)
= a.111
Vì 111chia hết cho 37 nên suy ra số có dạng aaa hay aaaa chia hết cho 37
Câu hỏi tương tự:
Chứng tỏ rằng số có dạng aaa bao giờ cũng chia hết cho 37
Toán lớp 6Chứng minh phản chứng
Nguyễn Tiến Hải 08/10/2014 lúc 08:39
aaa= a x 111 = a x 3 x 37 luôn luôn chia hết cho 37
a, ta có \(aa=a.11\Rightarrow aa \vdots 11\)
b,\(aaa=a.111=a.3.37 \vdots 37\Rightarrow aaa\vdots 37\)
Ta có : aa = 11.a mà 11.a có thừa số 11
suy ra 11.a chia hết cho 11 suy ra aa chia hết cho 11
b, Ta có aaa= 111.a = 37.3 .a = 37. ( 3.a)
suy ra 37. ( a.3 ) chia hết cho 37 suy ra aaa chia hết cho 37