\(\sqrt{\dfrac{2-\sqrt{3}}{2+\sqrt{3}}}+\sqrt{\dfrac{2+\sqrt{3}}{2-\sqrt{3}}}=4\)
\(\dfrac{\sqrt{a}}{\sqrt{a}-\sqrt{b}}-\dfrac{\sqrt{b}}{\sqrt{a}+\sqrt{b}}-\dfrac{2b}{a-b}=1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b)CM: \(ab\sqrt{1+\dfrac{1}{a^2b^2}}-\sqrt{a^2b^2+1}=0\)
\(VT=ab\sqrt{\dfrac{a^2b^2+1}{\left(ab\right)^2}}-\sqrt{a^2b^2+1}\)
\(VT=ab\dfrac{\sqrt{a^2b^2+1}}{ab}-\sqrt{a^2b^2+1}\)
\(VT=\sqrt{a^2b^2+1}-\sqrt{a^2b^2+1}\)
\(VT=0=VP\)
Ta có VT =\(\dfrac{\sqrt{a}}{\sqrt{a}-\sqrt{b}}-\dfrac{\sqrt{b}}{\sqrt{a}+\sqrt{b}}-\dfrac{2b}{a-b}\)
=\(\dfrac{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}-\dfrac{\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}-\dfrac{2b}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\) =\(\dfrac{a+\sqrt{ab}-\sqrt{ab}+b-2b}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)
=\(\dfrac{a-b}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)
=\(\dfrac{a-b}{a-b}=1=VP\)
(bài 1) a) \(\dfrac{1}{5+2\sqrt{6}}-\dfrac{1}{5-2\sqrt{6}}\) = \(\dfrac{5-2\sqrt{6}-5-2\sqrt{6}}{25-24}\)
= \(\dfrac{-4\sqrt{6}}{1}\) = \(-4\sqrt{6}\)
b) \(\sqrt{6+2\sqrt{5}}-\dfrac{\sqrt{15}-\sqrt{3}}{\sqrt{3}}\) = \(\sqrt{\left(\sqrt{5}+1\right)^2}-\dfrac{\sqrt{3}\left(\sqrt{5}-1\right)}{\sqrt{3}}\)
= \(\left(\sqrt{5}+1\right)-\left(\sqrt{5}-1\right)\) = \(\sqrt{5}+1-\sqrt{5}+1\) = \(2\)
c) \(\dfrac{3\sqrt{2}-2\sqrt{3}}{\sqrt{3}-\sqrt{2}}:\dfrac{1}{\sqrt{16}}\) = \(\dfrac{\sqrt{6}\left(\sqrt{3}-\sqrt{2}\right)}{\sqrt{3}-\sqrt{2}}:\dfrac{1}{\sqrt{16}}\)
= \(\sqrt{6}.\sqrt{16}\) = \(4\sqrt{6}\)
d) \(\dfrac{3+2\sqrt{3}}{\sqrt{3}}+\dfrac{2+\sqrt{2}}{1+\sqrt{2}}-\dfrac{1}{2-\sqrt{3}}\)
= \(\dfrac{\sqrt{3}\left(\sqrt{3}+2\right)}{\sqrt{3}}+\dfrac{\sqrt{2}\left(\sqrt{2}+1\right)}{1+\sqrt{2}}-\dfrac{1}{2-\sqrt{3}}\)
= \(\sqrt{3}+2+\sqrt{2}-\dfrac{1}{2-\sqrt{3}}\) = \(\dfrac{\left(\sqrt{3}+2+\sqrt{2}\right)\left(2-\sqrt{3}\right)-1}{2-\sqrt{3}}\)
= \(\dfrac{2\sqrt{3}-3+4-2\sqrt{3}+2\sqrt{2}-\sqrt{6}-1}{2-\sqrt{3}}\)
= \(\dfrac{2\sqrt{2}-\sqrt{6}}{2-\sqrt{3}}\) = \(\dfrac{\sqrt{2}\left(2-\sqrt{3}\right)}{2-\sqrt{2}}\) = \(\sqrt{2}\)
e) \(\dfrac{4}{1+\sqrt{3}}-\dfrac{\sqrt{15}+\sqrt{3}}{1+\sqrt{5}}\) = \(\dfrac{4}{1+\sqrt{3}}-\dfrac{\sqrt{3}\left(\sqrt{5}+1\right)}{1+\sqrt{5}}\)
= \(\dfrac{4}{1+\sqrt{3}}-\sqrt{3}\) = \(\dfrac{4-\sqrt{3}-3}{1+\sqrt{3}}\) = \(\dfrac{1-\sqrt{3}}{1+\sqrt{3}}\)
= \(\dfrac{\left(1-\sqrt{3}\right)\left(1-\sqrt{3}\right)}{1-3}\) = \(\dfrac{1-2\sqrt{3}+3}{-2}\) = \(\dfrac{4-2\sqrt{3}}{-2}\)
= \(\dfrac{-2\left(-2+\sqrt{3}\right)}{-2}\) = \(\sqrt{3}-2\)
bài 2)
a)\(\dfrac{a+b-2\sqrt{ab}}{\sqrt{a}-\sqrt{b}}:\dfrac{1}{\sqrt{a}+\sqrt{b}}=\dfrac{\left(a+b-2\sqrt{ab}\right)\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}\)
= \(\dfrac{a\sqrt{a}+a\sqrt{b}+b\sqrt{a}+b\sqrt{b}-2a\sqrt{b}-2b\sqrt{a}}{\sqrt{a}-\sqrt{b}}\)
= \(\dfrac{a\sqrt{a}+-a\sqrt{b}+b\sqrt{b}-b\sqrt{a}}{\sqrt{a}-\sqrt{b}}\) = \(\dfrac{a\left(\sqrt{a}-\sqrt{b}\right)-b\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}\)
= \(\dfrac{\left(a-b\right)\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}\) = \(a-b\)
b) \(\left(\dfrac{\sqrt{a}}{2}-\dfrac{1}{2\sqrt{a}}\right).\left(\dfrac{a-\sqrt{a}}{\sqrt{a}+1}-\dfrac{a+\sqrt{a}}{\sqrt{a}-1}\right)\)
= \(\dfrac{2a-2}{4\sqrt{a}}.\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)^2-\sqrt{a}\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\)
= \(\dfrac{2a-2}{4\sqrt{a}}.\dfrac{\sqrt{a}\left(a-2\sqrt{a}+1\right)-\sqrt{a}\left(a+2\sqrt{a}+1\right)}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\)
= \(\dfrac{2a-2}{4\sqrt{a}}.\dfrac{a\sqrt{a}-2a+\sqrt{a}-a\sqrt{a}-2a-\sqrt{a}}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\)
= \(\dfrac{2\left(a-1\right)}{4\sqrt{a}}.\dfrac{-4a}{a-1}\) = \(-2\)
a, \(ĐKXĐ:a;b>0;a\ne2b\\ \)
Xét: \(\dfrac{2\left(a+b\right)}{\sqrt{a^3}-2\sqrt{2b^3}}-\dfrac{\sqrt{a}}{a+\sqrt{2ab}+2b}=\dfrac{2\left(a+b\right)}{\left(\sqrt{a}-\sqrt{2b}\right)\left(a+\sqrt{2ab}+2b\right)}-\dfrac{\sqrt{a}}{a+\sqrt{2ab}+2b}=\dfrac{a+2b+\sqrt{2ab}}{\left(\sqrt{a}-\sqrt{2b}\right)\left(a+\sqrt{2ab}+2b\right)}=\dfrac{1}{\sqrt{a}-\sqrt{2b}}\)\(\dfrac{\sqrt{a^3}+2\sqrt{2b^3}}{2b+\sqrt{2ab}}-\sqrt{a}=\dfrac{\left(\sqrt{a}+\sqrt{2b}\right)\left(a-\sqrt{2ab}+2b\right)}{\sqrt{2b}\left(\sqrt{a}+\sqrt{2b}\right)}-\sqrt{a}=\dfrac{\left(\sqrt{a}-\sqrt{2b}\right)^2}{\sqrt{2b}}\)\(\Rightarrow P=\dfrac{\sqrt{a}-\sqrt{2b}}{\sqrt{2b}}=\sqrt{\dfrac{a}{2b}}-1\)
b, Tự lm nhé.
Bài 1:
a) \(\sqrt{1,44\cdot1,21-1,44\cdot0,4}\)
\(=\sqrt{1,44\cdot\left(1,21-0,4\right)}\)
\(=\sqrt{1,44\cdot0,81}\)
\(=\sqrt{1,44}\cdot\sqrt{0,81}\)
\(=1,2\cdot0,9\)
\(=1,08\)
b) \(\dfrac{\sqrt{5}-2}{\sqrt{5}+2}+\sqrt{80}\)
\(=\dfrac{\left(\sqrt{5}-2\right)^2}{\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)}+4\sqrt{5}\)
\(=\dfrac{5-4\sqrt{5}+4}{1}+4\sqrt{5}\)
\(=9-4\sqrt{5}+4\sqrt{5}\)
\(=9\)
c) \(\sqrt[3]{16}+\sqrt[3]{2}\left(\sqrt[3]{4}-\sqrt[3]{2}\right)\)
\(=\sqrt[3]{2^3\cdot2}+\sqrt[3]{2\cdot4}-\sqrt[3]{2\cdot2}\)
\(=2\sqrt[3]{2}+\sqrt[3]{8}-\sqrt[3]{4}\)
\(=2\sqrt[3]{2}+2-\sqrt[3]{4}\)
Bài 2: Ta có:
\(VT=\dfrac{1}{\sqrt{a}-\sqrt{b}}:\dfrac{a\sqrt{b}+b\sqrt{a}}{\sqrt{ab}}\)
\(=\dfrac{\sqrt{a}+\sqrt{b}}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}:\dfrac{\sqrt{ab}\cdot\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{ab}}\)
\(=\dfrac{\sqrt{a}+\sqrt{b}}{a-b}\cdot\dfrac{1}{\sqrt{a}+\sqrt{b}}\)
\(=\dfrac{\sqrt{a}+\sqrt{b}}{\left(a-b\right)\left(\sqrt{a}+\sqrt{b}\right)}\)
\(=\dfrac{1}{a-b}=VP\left(dpcm\right)\)
ai giúp vs
1. \(\sqrt{\dfrac{2-\sqrt{3}}{2+\sqrt{3}}}+\sqrt{\dfrac{2+\sqrt{3}}{2-\sqrt{3}}}=4\)
\(\Leftrightarrow\sqrt{\dfrac{\left(2-\sqrt{3}\right)^2}{1}}+\sqrt{\dfrac{\left(2+\sqrt{3}\right)^2}{1}}=4\)
\(\Leftrightarrow2-\sqrt{3}+2+\sqrt{3}=4\)
\(\Leftrightarrow4=4\left(đpcm\right)\)
2. \(\dfrac{\sqrt{a}}{\sqrt{a}-\sqrt{b}}-\dfrac{\sqrt{b}}{\sqrt{a}+\sqrt{b}}-\dfrac{2b}{a-b}=1\)
\(\Leftrightarrow\dfrac{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)-\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)-2b}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}=1\)
\(\Leftrightarrow\dfrac{a+\sqrt{ab}-\sqrt{ab}+b-2b}{a-b}1\)
\(\Leftrightarrow\dfrac{a-b}{a-b}=1\left(đpcm\right)\)