Tim gtn
a, -a^2+3a+2
b,x(x-2x)
c,(1-3x)(x+2)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=(a+1)(a+2)(a^2+4)(a-1)(a^2+1)(a-2)
A =(a+1)(a-1)(a+2)(a-2)(a^2+4)(a^2+1)
A =(a^2-1)(a^2+1)(a^2-4)(a^2+4)
A =(a^4-1)(a^4-16)
A =\(a^{16}-16\cdot a^4-a^4+16\)
A =\(a^{16}-17\cdot a^4+16\)
B=(a+2b-3c-d)(a+2b+3c+d)
B=[(a+2b)^2 - (3c +d)^2]
B=[a^2+4ab+4b^2-(9c^2+6cd+d^2)]
B=a^3+4ab+4b^2 - 9c^2 - 6cd - d^2
C=(1-x-2x^3+3x^2)(1-x+2x^3-3x^2)
C=[(1-x)^2-(2x^3-3x^2)^2]
C=[(1-2x+x^2) - (4x^6-12x^5+9x^4)]
C=[1-2x-x^2-4x^6+12x^5-9x^4]
C=-4x^6+12x^5-9x^4-x^2-2x+1
D=(a^6-3a^3+9)(a^3+3)
D=a^9+27
Câu 1:
a,4a2b( 2ab2 - 3a2b2)
= 8a3b3 - 12a4b3
b, ( x - 4 )( x2 + 2x - 5)
= x( x2 + 2x - 5) - 4(x2 + 2x - 5)
= x3 + 2x2 - 5x - 4x2 - 8x + 20
= x3 - 2x2 - 13x + 20
Câu 2 :
a, 4xy ( 2xy2 - 3x2y)
= 8x2y3 - 12x3y2
b,( x + 2 )( 2x2 - 3x + 4)
= x( 2x2 - 3x + 4) + 2( 2x2 - 3x + 4)
= 2x3 - 3x2 + 4x + 4x2 - 6x + 8
= 2x3 + x2 - 2x + 8
Câu 3 :
a, ( x + y )2 = x2 + 2.x.y + y2 = x2 + 2xy + y2
b, ( 2m - n )3 = ( 2m)3 - 3.( 2m )2.n + 3.2m.n2 - n3
= 8m3 - 12m2n + 6mn2 - n3
Chúc bạn học tốt
Vì ko có thời gian nên mình chỉ có thể giúp bạn câu 3 thôi nhé mong bạn thông cảm cho minh nha.
a, (x+y)^2=x^2+2*x*y+y^2=x^2+2xy+y^2
b, (2m-n)^3=2m^3-3*2m^2*n+3*2m*n^3-n^3=2m^3-6m^2n+6mn^3-n^3.
Mong bn thông cảm cho mình nha. Chúc bn luôn may mắn.
(3x^3 - 2x^2 + x + 2)(5x^2)
= 15x^5 - 10x^4 + 5x^3 + 10x^2
(3x^2 + 5x - 2)(2x^2 - 4x + 3)
= 3x^4 - 12x^3 + 9x^2 + 10x^3 - 20x^2 + 15x - 4x^2 + 8x - 6
= 6x^4 - 2x^3 - 15x^2 + 23x - 6
\(a,x=2\Leftrightarrow A=3\cdot4-4\cdot2-1=12-8-1=3\\ b,B=x^3-1-2x+x^2-2+x-x^3=x^2-x-3\\ c,C=B-A=x^2-x-3-3x^2+3x+1=-2x^2-2x-2\\ C=-2\left(x^2+x+\dfrac{1}{4}+\dfrac{3}{4}\right)=-2\left(x+\dfrac{1}{2}\right)^2-\dfrac{3}{2}\le-\dfrac{3}{2}\\ C_{max}=-\dfrac{3}{2}\Leftrightarrow x=-\dfrac{1}{2}\)
Áp dụng định lý Bezout ta có:
f(x) chia hết cho x-3 \(\Rightarrow f\left(3\right)=0\)
\(\Leftrightarrow2a+3b=-87\left(1\right)\)
g(x) chia hết cho x-3 \(\Rightarrow g\left(3\right)=0\)
\(\Leftrightarrow-3a+2b=-318\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\hept{\begin{cases}2a+3b=-87\\-3a+2b=-318\end{cases}\Leftrightarrow}\hept{\begin{cases}a=60\\b=-69\end{cases}}\)
Vậy ...
e) = \(\dfrac{3}{2\left(x+3\right)}\) - \(\dfrac{x-6}{2x\left(x+3\right)}\)
= \(\dfrac{3x}{2x\left(x+3\right)}\) - \(\dfrac{x-6}{2x\left(x+3\right)}\) = \(\dfrac{3x-x+6}{2x\left(x+3\right)}\)
= \(\dfrac{2x-6}{2x\left(x+3\right)}\)
= \(\dfrac{2\left(x-3\right)}{2x\left(x+3\right)}\)
c) = \(\dfrac{2\left(a^3-b^3\right)}{3\left(a+b\right)}\) . \(\dfrac{6\left(a+b\right)}{a^2-2ab+b^2}\)
= \(\dfrac{-2\left(a+b\right)\left(a^2-2ab+b^2\right)}{3\left(a+b\right)}\) . \(\dfrac{6\left(a+b\right)}{a^2-2ab+b^2}\)
= \(\dfrac{-2\left(a+b\right)}{1}\) . \(\dfrac{2}{1}\) = -4 (a+b)